Search

Energy expert reveals why Australia's net zero future depends on a bold, inverted shift

We are an online community created around a smart and easy to access information hub which is focused on providing proven global and local insights about sustainability

30 Oct, 2024

This post was originally published on Sustainability Matters

As political debate over the future of Australia’s energy landscape heats up amid the race to a net zero future, Dr Andrew Barton, an expert in energy innovation, is calling for a bold, united shift that turns the energy market ‘inside out’.

With renewable energy as the base, he’s advocating for an energy market flip mix where gas, nuclear and advanced storage systems could strategically complement renewables to build a resilient and diverse power grid that transcends political divides. But the country must first depoliticise the approach, he warns.

Barton is a senior executive within the Australasia Energy team at Hatch. With almost three decades in energy development across renewables and fossil fuels, Barton stressed the urgency of Australia’s transition. “We need to accelerate our efforts to drive forward the transformation of our energy and power systems.

“Our goal should be to forge a sustainable roadmap immediately, balancing an optimistic drive with a focus on Australia’s unique challenges and advantages.”

Barton, who led work on projects such the $30 billion SunCable AAPowerLink, advocates for a ‘turned inside out’ energy market that prioritises resilience and diversification. By expanding beyond any single power source, Australia can build a grid that not only decarbonises but also circumvents fluctuations in global demand and supply chains.

A balanced approach: renewables, resilience and reliable baseload power

Barton underscores the value of renewables as the foundational power source for Australia, complemented by peaking power from gas, hydro or even nuclear.

“As it stands, there is no one-size-fits-all solution for Australia,” Barton said.

“Right now, every source of energy should be on the table and as the technology continues to evolve.

“But the goal is a resilient, decarbonised grid where renewable energy leads, and fossil fuels bridge peak periods, as we refine technologies for long-duration storage.”

This approach includes exploring nuclear power, not as a baseload — historically its role — but as a potential peaking power option.

“There’s global precedent, like in Canada, for nuclear as a flexible resource. A tech evaluation here could be a game changer if nuclear can meet Australia’s peaking needs,” he suggested.

Harnessing diversity and ditching politics to bolster Australia’s energy future

The Australian Energy Market Operator (AEMO) is responsible for long-term planning and forecasting for the National Energy Market (NEM), as outlined in its biennially updated Integrated Service Plan (ISP). Barton explained that as technology and policy evolve, so too will this forecast for Australia’s energy mix.

His call for a political-free long-term approach to net zero energy strategies comes amid intense debate over renewable energy developments, particularly after the Illawarra in NSW was declared an offshore wind area this year.

Barton stressed that while solar and wind are essential, they alone cannot power Australia. “Solar PV is incredibly cost-effective compared to other sources, but it’s limited by daily production peaks and storage costs for oversupply,” he explained.

“When it comes to that storage, we have solutions for shifting short periods of solar peak generation in the middle of the day to peak demand periods, such as the early evening, but we lack sufficient cost-effective long-duration storage to bridge the gap across the full 24hr diurnal cycle.

“This means solar must be supplemented with energy storage to ensure we can keep our critical infrastructure such as hospitals running for 24 hours a day. A broad mix of energy storage solutions are critical to underpin the variable renewable generation from solar and wind.”

Barton added that grid resilience relies on broad geographic and technological diversity, as well as innovative storage solutions. A diversified supply approach, including offshore wind, decentralises the grid and enhances energy security.

“Shifting away from a ‘hub and spoke’ model allows for a more robust generation system,” he added.

Barton said offshore wind farms have been recently slammed for being expensive, and while there’s truth to that statement, he argues it’s more complicated.

“Offshore wind comes at a price — roughly double what it costs to develop onshore wind — and because of that it has attracted opposition as people think it will drive up power prices. But the cost of power to consumers is determined by the total mix of generation, not a single source,” he said.

“Offshore wind is a lot more reliable as it doesn’t have the same thermal effects that onshore wind can suffer from. Offshore wind farms don’t have the same land availability constraints and are generally closer to major transmission infrastructure connection points. Furthermore, we need the capacity and supply diversity that offshore wind can provide.”

Barton added that onshore wind farms are typically much smaller scale and needed to be located further from population centres. This therefore requires long-distance and high-capacity transmission systems to deliver the power to where it is needed.

Like solar, wind can be unreliable and susceptible to wind droughts, as has been experienced across South-Eastern Australia recently. However, a diverse combination of solar PV (domestic, commercial and utility scale), onshore and offshore wind, along with short- and long-duration storage will contribute a major part of the nation’s renewable energy mix, said Barton.

“Add to this mix peaking power supply from gas and hydro and we have a power generation system that can meet most, if not all, of near-term demand. But is this enough?”

Nuclear as a peaking power solution?

Right now, said Barton, our baseload power is predominantly coal, supplemented with wind and solar renewable generation and gas-fired and hydropower for peaking generation to meet daily power demands.

While the Liberal National Coalition are pushing for Nuclear Energy, Barton said if it could be used as peaking power, this could be a true game changer. A Moltex Energy report in Canada recently argued the same, even pointing its economic feasibility. But the nation has a long way to go yet as it lacks infrastructure, regulatory framework, or capability for nuclear energy right now, said Barton.

“Almost every country relying on nuclear to reach their renewable target is already using it,” he said.

“Right now, we need to understand the regulatory requirements to potentially introduce the technology. We need to closely monitor the evolution of nuclear technology and its associated costs. And we need to understand how nuclear may complement our renewable energy mix.”

Gas and hydrogen: transition fuels for today, preparing for tomorrow

Barton said gas has a transitional role as Australia phases out coal.

“Until renewable technology fully meets demand, gas-fired plants bridge gaps in our system. While hydrogen offers promise, cost barriers remain.

“Green hydrogen could be pivotal in the long term, but today’s green hydrogen tech limits and associated costs position gas as a critical interim peaking solution.

“Right now, we can’t achieve carbon-free energy security until other options are available to provide peaking or flexible generation power for when renewable generation and storage can’t meet total demands across the networks.

“The challenges aren’t insurmountable if we foster informed debate, focusing on both technological and environmental imperatives without divisive rhetoric.”

Dr Andrew Barton is the Director (Project Implementation) of Australia-Asia Energy at Hatch, a global multidisciplinary leader in engineering, operational and development projects in energy, metals, and infrastructure. He has decades of global engineering and project management experience in renewable and oil-and-gas energy development projects. His role at Hatch is to build its capability to successfully deliver energy projects.

Top image credit: iStock.com/Imgorthand

Pass over the stars to rate this post. Your opinion is always welcome.
[Total: 0 Average: 0]

You may also like…

Energy Efficiency as an Imperative Climate Strategy

Energy Efficiency as an Imperative Climate Strategy

With mandatory climate statement disclosure rolling out in Australia, businesses need to start reporting on their emissions and sustainability plans for the future. As companies begin assessing the relevant risks and opportunities related to various climate scenarios, energy efficiency presents itself as an immediate climate-strategy with long-term benefits.

Commencing 1 January 2025, businesses that meet two of the three conditions — more than 500 employees, gross assets above $1 billion or $500 million or more in consolidated gross revenue — are required to lodge a climate statement, which discloses their climate-related plans, financial risks and obligations. As part of the gradual roll-out, by 1 July 2027, businesses that meet two of these conditions — more than 100 employees, gross assets above $25 million or exceeding $50 million in consolidated gross revenue — will also be required to report.

This climate statement will need to include the company’s sustainability governance, climate risks and opportunities, including those physical and transition related. They will also need to disclose their Scope 1 and 2 emissions, strategy to decarbonise, and conduct scenario analysis on the short, medium and long term impacts on the business. By the second year of reporting, businesses will also be expected to report on Scope 3 emissions.

Scenario analysis will be based on various assumptions of the state of the climate, one of which includes a possible future where global temperature has increased 2.5°C or more. They will be required to share their climate strategy and steps they are taking long-term in preparation for this scenario.

Common themes within climate strategies will include switching to renewable energy sources, electrifying fleet vehicles, purchasing carbon credits, and carbon capture and storage. Many of these methods look at reducing emissions through the energy source, or targeting the carbon aspect directly; however, climate strategies can also include reducing the amount of energy used. By investing in more energy efficient equipment, sites can maintain production whilst using less energy and producing less emissions.

When increasing energy efficiency and reducing energy consumption first, businesses will see short-term impacts; however, in the long term, they are also improving their foundation for an energy transition. Assuming no other changes, higher energy efficiency can lead to decreased energy demand, allowing for reduced system requirements when specifying and planning for self-generation or energy costs.

To understand what opportunities are available for upgrading to more energy efficient equipment, businesses can start with an energy audit to understand how energy is being consumed across site. Energy audits, like the ABB Energy Appraisal, can provide a roadmap for where and how equipment can be upgraded for the best energy saving potential. An energy audit identifies areas that can be immediately improved with existing equipment on the market, so there is no need to wait for the commercialization or development of more sustainable technology. Going beyond just changing all lights to LEDs, efficiency recommendations may include areas where variable speed drives can be added to control motor speed or upgrading from an IE3 motor to an IE5 ultra-premium efficiency or IE6 hyper-premium efficiency motor to reduce energy losses by 40% or more. This area can often be overlooked on sites as the Minimum Energy Performance Standard (MEPS) in Australia for motors is just IE2.

Mostly used in pumps, compressors, conveyors and fans, motors may seem like a minor part of a site; however, with 45% of the world’s electricity converted into motion by industrial electric motors, there are many opportunities for energy savings. In fact, a recent survey commissioned by ABB IEC Low voltage motors, showed that 92% of surveyed businesses in Australia recognize the important role of electric motors in achieving sustainability targets. In this same survey, participants ranked a reduction in operating cost as a more important driver for investing in energy efficiency than lowering their organization’s emissions. This is because upgrading to newer, more efficient equipment provides benefits beyond just emission reduction. For example, ABB’s Synchronous Reluctance (SynRM) Motors, available in IE5 ultra-premium efficiency or IE6 hyper-premium efficiency, use no rare earth metals or magnets. Running quieter and with bearing temperatures reduced by up to 15°C and winding temperatures by up to 30°, SynRM motors have longer maintenance periods, superior reliability, and contribute to a better operational environment.

Looking ahead, upgrading to an IE5 SynRM motor also provides more visibility into Scope 3 emissions, as SynRM motors meet ABB’s circularity criteria and transparency on environmental impact is provided through Environmental Product Declarations (EPDs).

By requiring companies to disclose their climate information, these new legal requirements are opening the door and facilitating more internal discussions on environmental impact and emission reduction. Whilst mandatory climate reporting is only required of large business entities this year, the progressive roll-out and Scope 3 emission reporting requirements mean that businesses of all sizes in Australia will be impacted by these new requirements. As businesses become more conscious of how sustainability should be integrated into their operations and finances, there is no better time to start investing in energy efficient solutions.

For more information, click here.

Image credit: iStock.com/denizunlusu

0 Comments