Search

The Impact of High-Efficiency Mechatronic Drive Systems on Energy Reduction

We are an online community created around a smart and easy to access information hub which is focused on providing proven global and local insights about sustainability

02 Oct, 2024

This post was originally published on Sustainability Matters

In an era where energy conservation is paramount, high-efficiency mechatronic drive systems are emerging as vital components in various industries. These systems combine mechanical, electrical, and electronic engineering principles to enhance performance while minimizing energy consumption. As businesses seek to lower their operational costs and environmental impact, the adoption of these advanced technologies are becoming increasingly crucial.

The question then becomes, what is the best way to adopt these technologies in industrial applications? Francois Sieberhagen, National Product Engineer – Product Management at SEW-EURODRIVE, says that optimising the entire drive system leads to significant improvements. He says that the energy expenses associated with operating electric motors may account for more than 80% of the total cost of ownership (TCO).

Sieberhagen suggests focusing on optimising the efficiency of each component in the drive chain to ensure that they all have high energy efficiency ratings, both individually and as a system. He explains that two prevailing international standards govern the efficiency of electric motors.

IEC 60034-30-1 covers line-operated AC motors. The standard refers to efficiency classes from IE1 to IE4, with IE1 – Standard Efficiency being the least efficient and IE4 – Super Premium Efficiency the most efficient.

IEC TS 60034-30-2 specifies efficiency classes for inverter duty motors not covered by IEC 60034-30-1. This standard introduces an additional efficiency class, IE5 – Ultra Premium Efficiency, which is currently the highest defined class.

Exceeding the standard

In Australia, MEPS regulations mandate that low voltage motors meet a minimum energy performance standard of IE2, which is classified as high efficiency. Sieberhagen notes that the motors supplied by SEW-EURODRIVE to the Australian market not only meet but surpass this requirement, with efficiency classes ranging from premium (IE3) to ultra-premium (IE5).

MOVIGEAR® performance combines the motor, gear unit, and frequency inverter into a single, compact housing, with integrated communication for operation on all standard Ethernet-based infrastructures. This innovative drive unit is notable for its space-saving design, impressive overload capability and it is up to 50% lighter than conventional drive systems. By combining the inverter with IE5-class motors, MOVIGEAR® performance surpasses the highest defined energy efficiency class IES2 to IEC 61800-9-2 for systems comprising of a motor and inverter, setting a new benchmark that outperforms current market solutions. These products are often used for dynamic material handling applications. In Europe, one fulfilment centre achieved 1710 kg/year fewer CO2 emissions and a 57% average energy saving per drive after modernising with a MOVIGEAR® performance solution. They were also able to reduce noise by 50% due to the drives being fan-free.

The local experience is similar. “A number of Australian airports have achieved energy savings in their baggage-handling conveyor lines by installing MOVIGEAR® performance. The extent of the improvement ranges from 50% to 70%,” says Sieberhagen.

A versatile solution for any application

Other components in the drive system also play a role in reducing energy consumption. SEW-EURODRIVE’s DR2C series synchronous motors also meet the requirements of the IE5 efficiency class. These motors, designed for pure inverter operation, offer dynamic and thermal reserves for a sustainable operation and lifecycle cost reduction. Interior permanent magnet (IPM) technology reduces the size of the motors.

“A DR2C series motor can be two sizes smaller than its equivalent asynchronous motor,” says Sieberhagen.

Sieberhagen also points out that the operating temperature of the DR2C motor has a role to play in contributing to the sustainability of the system. Since the motor runs cooler, it lasts longer. The longer lifetime is once again suitable for both the environment and the bottom line.

Another component to be optimised in materials-handling applications is the drive unit. The SEW-EURODRIVE MOVIMOT® advanced drive unit combines an asynchronous motor with a frequency inverter to create a decentralised drive unit that can be combined with any standard gear unit. Depending on the choice of motor, the efficiency rating will be either IE5 or IE3. Nominal power ratings for drives with the ultra-premium efficiency DR2C series synchronous motor range from 0.75 kW to 2.4 kW; for the DRN series, the range is 0.37 kW to 7.5 kW.

“Further, motors operated with inverters can reduce the energy consumption by adjusting the motor speed to precisely match the application requirements,” says Sieberhagen.

Overall efficiency

Sieberhagen says that maximising energy efficiency relies not just on the individual components but also on the exact way they coordinate with each other. When these components are designed to be a perfect fit, the optimisation is complete. The interplay between cutting-edge electronics and closed-loop control technology on the one hand, and an optimised high-efficiency motor and efficient helical gear unit on the other, culminates in system savings of up to 50% compared to the standard alternative.

Adopting high-efficiency mechatronic drive systems is a transformative approach to energy management across various industries. These systems significantly reduce energy consumption, minimise waste, and enhance operational performance. Consequently, they not only lower operating costs but also contribute to a more sustainable future. As businesses continue to embrace these technologies, the potential for energy reduction and environmental stewardship will undoubtedly grow, paving the way for a greener industrial landscape.

Pass over the stars to rate this post. Your opinion is always welcome.
[Total: 0 Average: 0]

You may also like…

ABB receives EPD status for gearless mill drive ring motor

ABB receives EPD status for gearless mill drive ring motor

ABB has gained Environmental Product Declaration (EPD) status for its Gearless Mill Drive (GMD) ring motor — technology used to drive large grinding mills in the mining industry.

An EPD is a standardised document that provides detailed information about the environmental impact of a product throughout its life cycle. Based on a comprehensive Life Cycle Assessment (LCA) study, the EPD highlights ABB’s commitment to transparency, environmental responsibility and supporting customers in making informed decisions on sustainability in their supply chains.

ABB analysed the environmental impact of a ring motor across its entire life cycle from supply chain and production to usage and end-of-life disposal. The study was conducted for a ring motor of a semi-autogenous grinding (SAG) mill with an installed power of 24 MW and was based on a reference service life of 25 years.

“Sustainability is at the core of our purpose at ABB, influencing how we operate and innovate for customers,” said Andrea Quinta, Sustainability Specialist at ABB. “By earning the Environmental Product Declaration for our ring motor, we emphasise our environmental stewardship and industry leadership for this technology. We adhered to the highest standards throughout this process, as we do in the ABB Ring Motor factory every day. This recognition highlights to the mining industry what they are bringing into their own operations when they work with ABB.”

The comprehensive LCA was conducted at ABB’s factory in Bilbao, Spain, and was externally verified and published in accordance with international standards ISO 14025 and ISO 14040/14044. It will remain valid for five years.

The ring motor, a key component of the GMD, is a drive system without any gears where the transmission of the torque between the motor and the mill is done through the magnetic field in the air gap between the motor stator and the motor rotor. It optimises grinding applications in the minerals and mining industries by enabling variable-speed operation, leading to energy and cost savings.

The full EPD for the ABB GMD Ring Motor can be viewed on EPD International.

Bee Hotels Can Help Native Pollinators Recover in the Wake of Climate-Fueled Wildfires: Study

Bee Hotels Can Help Native Pollinators Recover in the Wake of Climate-Fueled Wildfires: Study

Wild pollinator populations are declining all over the world, with increasingly severe climate change-fueled wildfires threatening their survival. These intense wildfires are also putting long-term ecosystem health and biodiversity at risk. Bee hotels are artificial nesting structures that have been specially designed to house cavity-nesting species. Often placed in backyards or gardens, they provide safe […]
The post Bee Hotels Can Help Native Pollinators Recover in the Wake of Climate-Fueled Wildfires: Study appeared first on EcoWatch.

0 Comments