Search

The central role of energy storage in our renewable energy future

We are an online community created around a smart and easy to access information hub which is focused on providing proven global and local insights about sustainability

28 Jun, 2024

This post was originally published on Sustainability Matters

As the impacts of climate change intensify globally and emission reduction deadlines loom, Australia must prioritise its power supply.

The 2019–2020 Australian bushfires, which triggered widespread blackouts nationwide, underscore the urgent need for power resilience. These events highlighted the critical necessity for reliable energy sources and robust energy storage solutions for businesses and communities alike. Moreover, they emphasised the importance of integrating renewable energy sources into the national grid to ensure a resilient and sustainable power supply during disruptions.

To do so, we must embrace digital technologies in the energy sector. These advancements not only support growth and sustainability but also enhance the resilience of our energy systems. By making renewable energy more practical and efficient, digital innovations pave the way for a stable and sustainable energy future for Australia. The transition to a digitally enabled, renewable energy infrastructure is not just an option — it is essential for securing our energy needs in the face of ongoing and future challenges.

Renewable progress in Australia

The government has set ambitious targets to expand renewable energy capacity, planning to add substantial wind and solar projects. This demonstrates Australia’s significant progress in adopting renewable energy systems (RES). Australian energy provider Origin Energy has recently demonstrated its strong commitment to renewable energy infrastructure by investing AU$400 million to build a 460 MW battery energy storage system (BESS) at its Victoria peaker plant.

Adopting RES helps drive the reduction of emissions and ensures energy availability. However, renewable energy generation is variable, depending on the fluctuating intensity of the sun and wind. To address this variability, we need grid-scale energy storage. Research indicates that implementing such solutions can help develop resilient grids capable of accommodating high levels of RES.

Long-duration storage

Long-duration energy storage (LDES) remains a significant technical challenge, as storage requirements can vary from hours to months. Pumped-storage hydroelectricity is widely used but holds untapped potential in many regions. Batteries, particularly lithium-ion, are the most scalable form of grid-scale storage due to their modular deployment and availability. Other technologies, like compressed air and gravity storage, play smaller roles in current power systems. Additionally, hydrogen storage holds promise for the seasonal storage of renewable energy.

Emerging technologies, such as flow batteries, also offer potential. Flow batteries use a liquid electrolyte to store electrical charge, scalable and adaptable to the variability of wind and solar generation. According to recent studies by 2040, LDES could deploy between 1.5 and 2.5 terawatts (TW) of power capacity globally, representing a significant increase from current levels.

Microgrid support

LDES can support micro-grid designs for large energy users, such as manufacturing and heavy industry. These facilities can deploy large battery systems, like lithium-ion batteries in intelligent uninterruptible power systems (UPS), to enhance storage capacity and facilitate greater RES adoption. Microgrids offer short-term storage capacity, helping to smooth peak grid usage and address variability concerns. This is especially beneficial for rural deployments and areas where proximity to RES generation is an issue. Microgrids ensure resilience, allowing power to flow even when generation sites are offline due to atmospheric conditions or disruptions.

As Australia moves towards implementing smart national grids, microgrids play a significant role. Large energy users can be rewarded for their storage and resupply capabilities, supporting peak grid usage. These measures can be quickly implemented through economies of scale, reference designs and vendors’ pursuit of efficiency. Organisations can confidently build out capacity while supporting decarbonisation efforts, moving Australia closer to a net zero energy future.

Digital innovation in power

The digitalisation of energy, or Electricity 4.0, is crucial for smart grids, microgrid integration, RES adoption and achieving net zero goals. Digital innovation enhances visibility in energy generation and distribution, eliminating waste and driving efficiency. Technologies like metering and monitoring enable better energy usage, while smart devices, apps, analytics and software allow for more efficient deployment of smart energy. These solutions enable everyone to contribute to a renewable-powered, sustainable energy future.

Renewable energy sources will form a significant part of future energy generation, crucial for achieving a decarbonised, net zero goal. Grid-scale energy storage and its resilience are critical for integrating renewable energy sources into digitised smart grids. Large energy consumers can support this transition by leveraging digitalised energy systems, increasing transparency and underpinning the development of sustainable digital economies accessible to all.

Australia’s renewable energy future depends on the effective integration of energy storage solutions. By embracing digital innovation and scalable storage technologies, we can build resilient and sustainable energy systems that meet our future needs.

Natalya Makarochkina.

Top image credit: iStock.com/JaCZhou

Pass over the stars to rate this post. Your opinion is always welcome.
[Total: 0 Average: 0]

You may also like…

Taking the electronic pulse of the circular economy

Taking the electronic pulse of the circular economy

In June, I had the privilege of attending the 2025 E-Waste World, Battery Recycling, Metal Recycling, and ITAD & Circular Electronics Conference & Expo events in Frankfurt, Germany.

Speaking in the ITAD & Circular Electronics track on a panel with global Circular Economy leaders from Foxway Group, ERI and HP, we explored the evolving role of IT asset disposition (ITAD) and opportunities in the circular electronics economy.

The event’s focus on advancing circular economy goals and reducing environmental impact delivered a series of insights and learnings. From this assembly of international expertise across 75+ countries, here are some points from the presentations that stood out for me:

1. Environmental impact of the digital economy

Digitalisation has a heavy material footprint in the production phase, and lifecycle thinking needs to guide every product decision. Consider that 81% of the energy a laptop uses in its lifetime is consumed during manufacture (1 tonne in manufacture is equal to 10,000 tonnes of CO2) and laptops are typically refreshed or replaced by companies every 3–4 years.

From 2018 to 2023, the average number of devices and connections per capita in the world increased by 50% (2.4 to 3.6). In North America (8.2 to 13.4) and Western Europe (5.6 to 9.4), this almost doubled. In 1960, only 10 periodic table elements were used to make phones. In 1990, 27 elements were used and now over 60 elements are used to build the smartphones that we have become so reliant on.

A key challenge is that low-carbon and digital technologies largely compete for the same minerals. Material resource extraction could increase 60% between 2020 and 2060, while demand for lithium, cobalt and graphite is expected to rise by 500% until 2050.

High growth in ICT demand and Internet requires more attention to the environmental footprint of the digital economy. Energy consumption of data centres is expected to more than double by 2026. The electronics industry accounts for over 4% of global GHG — and digitalisation-related waste is growing, with skewed impacts on developing countries.

E-waste is rising five times faster than recycling — 1 tonne of e-waste has a carbon footprint of 2 tonnes. Today’s solution? ‘Bury it or burn it.’ In terms of spent emissions, waste and the costs associated with end-of-life liabilities, PCBAs (printed circuit board assembly) cost us enormously — they generally achieve 3–5% recyclability (75% of CO2 in PCBAs is from components).

2. Regulating circularity in electronics

There is good momentum across jurisdictions in right-to-repair, design and labelling regulations; recycling targets; and voluntary frameworks on circularity and eco-design.

The EU is at the forefront. EU legislation is lifting the ICT aftermarket, providing new opportunities for IT asset disposition (ITAD) businesses. To get a sense, the global market for electronics recycling is estimated to grow from $37 billion to $108 billion (2022–2030). The value of refurbished electronics is estimated to increase from $85.9 billion to $262.2 billion (2022–2032). Strikingly, 40% of companies do not have a formal ITAD strategy in place.

Significantly, the EU is rethinking its Waste Electrical and Electronic Equipment (WEEE) management targets, aligned with upcoming circularity and WEEE legislation, as part of efforts to foster the circular economy. A more robust and realistic circularity-driven approach to setting collection targets would better reflect various factors including long lifespans of electronic products and market fluctuations.

Australia and New Zealand lag the EU’s comprehensive e-waste mandated frameworks. The lack of a systematic approach results in environmental degradation and missed positioning opportunities for businesses in the circular economy. While Australia’s Senate inquiry into waste reduction and recycling recommended legislating a full circular economy framework — including for imported and local product design, financial incentives and regulatory enforcement, New Zealand remains the only OECD country without a national scheme to manage e-waste.

3. Extending product lifecycles

Along with data security and digital tools, reuse was a key theme in the ITAD & Circular Electronics track of the conference. The sustainable tech company that I lead, Greenbox, recognises that reuse is the simplest circular strategy. Devices that are still functional undergo refurbishment and are reintroduced into the market, reducing new production need and conserving valuable resources.

Conference presenters highlighted how repair over replacement is being legislated as a right in jurisdictions around the world. Resources are saved, costs are lowered, product life is extended, and people and organisations are empowered to support a greener future. It was pointed out that just 43% of countries have recycling policies, 17% of global waste is formally recycled, and less than 1% of global e-waste is formally repaired and reused.

Right to repair is a rising wave in the circular economy, and legislation is one way that civil society is pushing back on programmed obsolescence. Its global momentum continues at different speeds for different product categories — from the recent EU mandates to multiple US state bills (and some laws) through to repair and reuse steps in India, Canada, Australia and New Zealand.

The European Commission’s Joint Research Commission has done a scoping study to identify product groups under the Ecodesign framework that would be most relevant for implementing an EU-wide product reparability scoring system.

Attending this event with the entire electronic waste recycling supply chain — from peers and partners to suppliers and customers — underscored the importance of sharing best practices to address the environmental challenges that increased hardware proliferation and complex related issues are having on the world.

Ross Thompson is Group CEO of sustainability, data management and technology asset lifecycle management market leader Greenbox. With facilities in Brisbane, Sydney, Melbourne, Canberra, Auckland, Wellington and Christchurch, Greenbox Group provides customers all over the world a carbon-neutral supply chain for IT equipment to reduce their carbon footprint by actively managing their environmental, social and governance obligations.

Image credit: iStock.com/Mustafa Ovec

0 Comments