Search

Storing CO2 in construction materials

We are an online community created around a smart and easy to access information hub which is focused on providing proven global and local insights about sustainability

28 Jan, 2025

This post was originally published on Sustainability Matters

New research out of the University of California, Davis and Stanford University has found that storing carbon dioxide in building materials could hugely reduce global greenhouse gas emissions.

The study, conducted by civil engineers and earth systems scientists, has been published in the journal Science. “The potential is pretty large,” said Elisabeth Van Roijen, who led the study as a graduate student at UC Davis.

Van Roijen and her colleagues are presenting this approach as an alternative — more effective — type of carbon sequestration.

Carbon sequestration aims to take carbon dioxide, either from where it is being produced or from the atmosphere, convert it into a stable form and store it away from the atmosphere where it cannot contribute to climate change. Previous proposals have involved injecting carbon underground or storing it in the deep ocean; however, these approaches pose both practical challenges and environmental risks.

“What if, instead, we can leverage materials that we already produce in large quantities to store carbon?” Van Roijen said.

Along with Sabbie Miller, associate professor of civil and environmental engineering at UC Davis, and Steve Davis at Stanford University, Van Roijen worked to calculate the potential for storing carbon in a variety of common building materials including concrete (cement and aggregates), asphalt, plastics, wood and brick.

More than 30 billion tons of conventional versions of these materials are produced worldwide every year.

Some of the techniques the team studied included adding biochar (made by heating waste biomass) into concrete; using artificial rocks that can be loaded with carbon as concrete and asphalt pavement aggregate; and incorporating biomass fibre into bricks. They also considered the use of plastics and asphalt binders based on biomass rather than fossil petroleum sources.

These technologies are at different stages of readiness, with some still being investigated at a lab or pilot scale and others already available for adoption.

The team found that while bio-based plastics could take up the largest amount of carbon by weight, concrete has by far the largest potential for carbon storage. This is because concrete is the world’s most popular building material, with over 20 billion tons produced every year.

“If feasible, a little bit of storage in concrete could go a long way,” Miller said. If 10% of the world’s concrete aggregate production were carbonateable, it could absorb a gigaton of CO2, according to the researchers’ calculations.

With the feedstocks for these new processes being mostly low-value waste materials such as biomass, Van Roijen said that implementing the new approach would enhance their value, creating economic development and promoting a circular economy.

While some development is needed, particularly in cases where material performance and net-storage potential of individual manufacturing methods must be validated, Miller said many of these technologies are just waiting to be adopted.

Van Roijen is now a researcher at the US Department of Energy National Renewable Energy Laboratory. The work was supported by Miller’s CAREER grant from the National Science Foundation.

Image credit: iStock.com/CentralITAlliance

Pass over the stars to rate this post. Your opinion is always welcome.
[Total: 0 Average: 0]

You may also like…

Embedding environmental stewardship into IT governance frameworks

Embedding environmental stewardship into IT governance frameworks

Integrating environmental stewardship into IT governance frameworks has become essential as businesses increasingly prioritise sustainability. IT operations contribute significantly to carbon emissions, energy consumption and electronic waste (e-waste). Organisations that embed environmental responsibility into their IT governance can reduce their ecological footprint, improve operational efficiency and strengthen their brand reputation.

Erica Smith, chief alliance officer and environmental, social and governance lead, Blue Connections IT, said, “Environmental stewardship supports financial performance, risk mitigation and brand differentiation. With rising energy costs, increased consumer demand for sustainable products and services, and growing pressure from investors and regulators, companies can no longer afford to overlook their environmental responsibilities.

“Poor sustainability practices in IT can lead to high operational costs, supply chain risks and reputational damage. Conversely, a proactive approach improves efficiency, attracts environmentally conscious customers and helps future-proof businesses against evolving policy and regulatory changes.

“Integrating environmental responsibility into IT governance integrates sustainability initiatives into decision-making systematically. Organisations can reduce waste, lower energy consumption and extend the lifecycle of technology assets while positioning themselves as responsible leaders in an increasingly climate-aware market.”

There are four key areas that present opportunities to embed environmental stewardship into IT governance frameworks.

1. Device lifecycle management

A structured approach to managing the lifecycle of IT assets ensures devices are deployed efficiently, maintained properly and retired responsibly at the end of their useful life. Embracing a circular economy model, where equipment is refurbished, reused or ethically recycled, can significantly reduce e-waste and resource use. Companies that adopt this approach lower their environmental impact and unlock financial value by extending the lifecycle of IT assets.

Smith said, “Effective asset recovery strategies further support sustainability efforts. Integrating secure data erasure and refurbishment into IT governance policies lets businesses repurpose functional devices within the organisation or resell them to external buyers. Responsible e-waste recycling also supports companies to process materials ethically in instances where resale is not viable, reducing landfill contributions and preventing environmental contamination. The adoption of industry-certified data sanitisation methods also safeguards compliance with security and privacy regulations.”

2. Sustainable procurement

IT governance frameworks should prioritise the selection of technology vendors and partners committed to sustainable manufacturing, responsible sourcing and energy-efficient product design. This includes favouring IT hardware with a high percentage of post-consumer recycled materials and using minimal packaging. Additionally, employing Device-as-a-Service (DaaS) models optimises IT asset utilisation while reducing upfront investment and unnecessary hardware purchases.

Partnerships with sustainability-driven IT service providers can further enhance an organisation’s environmental impact. Working with partners that offer end-to-end IT asset management solutions, encompassing secure device deployment, certified data sanitisation and ethical recycling, simplifies the process of aligning IT operations with sustainability goals. Companies that prioritise environmental stewardship in their IT governance framework gain a competitive advantage by demonstrating their commitment to responsible business practices.

3. Energy consumption

Data centres, cloud services and enterprise networks require substantial energy resources, making green IT practices essential. IT governance frameworks should include policies to reduce consumption by optimising server efficiency, reducing redundant infrastructure and using renewable energy sources. Cloud providers with strong sustainability credentials can support carbon reduction initiatives, while virtualisation strategies can consolidate workloads and improve overall energy efficiency.

4. Employee engagement

Educating staff on sustainable IT practices, such as energy-efficient device usage and responsible e-waste disposal, creates a culture of accountability. Organisations that implement green workplace initiatives, such as responsible end-of-life disposal programs, reinforce their commitment to sustainability at all levels.

“IT governance must also align with corporate environmental, social and governance commitments. Companies can contribute to broader sustainability objectives by embedding environmental stewardship into IT policies, such as net-zero emissions targets and responsible supply chain management. Clear reporting mechanisms and regular sustainability audits aid transparency, letting businesses track their progress and demonstrate accountability to stakeholders,” Smith said.

Government regulations and evolving industry standards are increasingly shaping the sustainability expectations for organisations. Aligning IT governance frameworks with best practices for environmental stewardship keeps companies ahead of regulatory requirements. Proactive adoption of sustainable IT practices positions businesses as industry leaders in environmental responsibility.

Smith said, “Integrating environmental stewardship into IT governance frameworks is not just about meeting compliance obligations; it’s about futureproofing company operations and prioritising the broader environment. Taking a proactive approach to sustainability lets organisations drive efficiency, reduce long-term costs and contribute to a healthier planet. Businesses that lead in sustainable IT governance will be well-positioned for long-term success as environmental concerns continue to shape consumer and corporate priorities.”

Image credit: iStock.com/Petmal

0 Comments