Search

Scientists Develop Biodegradable E-Textiles

We are an online community created around a smart and easy to access information hub which is focused on providing proven global and local insights about sustainability

09 Jan, 2025

This post was originally published on Eco Watch

In a new study, scientists from University of Southampton, University of the West of England Bristol, University of Exeter, University of Cambridge, University of Leeds and University of Bath have developed a way to make smart, electronic textiles that are also sustainable and biodegradable. 

The researchers have created ‘Smart, Wearable, and Eco-friendly Electronic Textiles’ (SWEET), technological fabrics with features like sensors or lights that are designed to biodegrade after they reach the end of their lifespan.

“Integrating electrical components into conventional textiles complicates the recycling of the material because it often contains metals, such as silver, that don’t easily biodegrade,” explained Nazmul Karim, lead author of the study and a professor at the Winchester School of Art at University of Southampton. “Our potential ecofriendly approach for selecting sustainable materials and manufacturing overcomes this, enabling the fabric to decompose when it is disposed of.”

To make a biodegradable e-textile, the researchers created a three-layer fabric with a Tencel-fabric base, an interface layer, and the sensor layer. The Tencel is a wood pulp-based fabric, and the team used graphene and a type of conductive polymer known as PEDOT:PSS for the electronic elements. 

From there, they were able to use inkjet printing to adhere these materials to the fabric, as this process used less water and energy and produced no material waste, according to the researchers.

The researchers tested the fabric by attaching it to gloves, which five humans wore in the study. The fabric was able to effectively measure the humans’ electrocardiogram (ECG) signals and skin temperature, just like many smart wearables on the market today.

Gloves with swatches of e-textile attached inside and wired for sensing testing. Marzia Dulal

“Achieving reliable, industry-standard monitoring with eco-friendly materials is a significant milestone. It demonstrates that sustainability doesn’t have to come at the cost of functionality, especially in critical applications like healthcare,” Shaila Afroj, a co-author of the study and associate professor of sustainable materials at the University of Exeter, said in a statement.

After testing how the fabric performed in tracking human physiology metrics, the team put SWEET to its bigger test — whether it was biodegradable. The fabric was buried in soil with a 6.5 to 6.8 pH in an incubator with a temperature of around 29 degrees Celsius (84 degrees Fahrenheit) and a relative humidity of around 90%.

After a four-month period, the fabric had a 48% decrease in weight and 98% decrease in strength. The graphene elements also revealed a 40 times smaller impact upon decomposition compared to standard electrodes in wearables. The researchers published their findings in the journal Energy and Environmental Materials.

According to Statista, smart wearable shipments were expected to reach 543 million units worldwide in 2024, and this number is only expected to grow, reaching an estimated 612.5 million units by 2028.

Further, a report by ResearchAndMarkets.com has estimated that the global smart textiles market will increase from $4.85 billion as of 2024 to $29.1 billion by 2033.

With this increasing demand comes the risk of increasing e-waste, or electronic waste. As Earth.org reported, humans currently generate about 50 million to 60 million tons of e-waste per year, and much of this waste does not break down into the soil. Instead, the materials can corrode or react to UV rays and leach harmful substances into the environment. According to the United Nations Institute for Training and Research, e-waste is slated to increase 32% by 2030. 

With the growing demand for smart, wearable technology, advancements such as biodegradable electronic textiles will be necessary to meet demand without contributing to more e-waste. The researchers noted that their study can help further additional research into more sustainable, and ultimately fully biodegradable or recyclable, e-textiles and other materials.

“Amid rising pollution from landfill sites, our study helps to address a lack of research in the area of biodegradation of e-textiles,” Karim said. “These materials will become increasingly more important in our lives, particularly in the area of healthcare, so it’s really important we consider how to make them more eco-friendly, both in their manufacturing and disposal.”

The post Scientists Develop Biodegradable E-Textiles appeared first on EcoWatch.

Pass over the stars to rate this post. Your opinion is always welcome.
[Total: 0 Average: 0]

You may also like…

Human Rights Watch Accuses UK of Undermining Democratic Rights With Crackdown on Climate Protesters

Human Rights Watch Accuses UK of Undermining Democratic Rights With Crackdown on Climate Protesters

The United Kingdom’s crackdown on climate protesters is setting a “dangerous” global precedent, according to the UK Director of Human Rights Watch (HRW) Yasmine Ahmed, reported The Guardian. British authorities are undermining democratic rights, particularly the right to protest peacefully, according to HRW’s World Report 2025. “Many of us had hoped that an incoming Labour […]
The post Human Rights Watch Accuses UK of Undermining Democratic Rights With Crackdown on Climate Protesters appeared first on EcoWatch.

Strengthening Community Resilience through Sustainable Non-Timber Forest Products

Strengthening Community Resilience through Sustainable Non-Timber Forest Products

Strengthening Community Resilience through Sustainable Non-Timber Forest Products
jschoshinski
Thu, 01/16/2025 – 18:32

In Zimbabwe, deforestation and habitat loss are not only threatening the country’s biodiversity and ability to mitigate climate change, but also threatening individuals’ livelihoods and their ability to adapt to climate change. Of the nearly 6,000 species of indigenous plants found in the country, some 900 of them are traditionally used as food, cosmetics, or medicine. These non-timber forest products (NTFPs) serve as supplemental sources of income for approximately 60 percent of rural households, providing an important source of income diversification as changes in rainfall—in part due to climate change—threaten traditional agricultural activities. By generating income for rural communities, Zimbabwe’s NTFPs offer a market-led approach to boosting climate resilience. 
The Economic Contribution of Non-Timber Forest Products in Zimbabwe 
In the landscapes where the USAID Resilience ANCHORS Activity works, one in six people, mostly women, rely on forests and wilderness areas for their livelihoods. Resilience ANCHORS supports community-led initiatives and locally prioritized interventions, including conserving forests and developing value chains for key NTFPs, such as Ximenia, mongongo nuts, wooden banana, marula, Kalahari melon seed, and rosella. Forest-based resources from remote, semi-arid regions can contribute up to 35 percent of rural incomes, while NTFP products like thatching grass, wild plant foods, mushrooms, honey, and mopane worms have an estimated annual subsistence value (i.e, the value associated with people using the products to support themselves rather than selling the products) of $294.3 million. Conserving these natural resources leads to strengthened livelihoods and healthier, more stable communities by supporting income diversification, which helps agricultural communities adapt to the impacts of climate change on crop yields.
Using Laws and Regulations to Strengthen Community Resilience
While NTFPs are vital resources for local communities, the lack of transparent laws and regulations has led to overexploitation and missed business opportunities. Limited awareness of the regulatory framework among stakeholders and community members exacerbates this issue. Resilience ANCHORS has supported the formation of NTFP collector groups that have developed formal governance structures, but the next objective is creating long-term sustainability through a robust legal framework that protects the environment and promotes community wellbeing. 
Sustainable harvesting remains critical for the long-term viability of Zimbabwe’s NTFPs, forests, and environment. Resilience ANCHORS, in collaboration with Zimbabwe’s Ministry of Local Government and the Environmental Management Agency, conducted workshops to build awareness of the legislative challenges and foster dialogue. This resulted in the drafting of NTFP Model Bylaw, which seeks to address three key goals:

Fill gaps in the legal framework: Outline benefit-sharing mechanisms to foster fair trade practices, as community ownership and management of NTFPs ensures equitable distribution among stakeholders. 
Promote sustainability: Develop permits to control harvesting, trade volumes, and fees to generate revenue for conservation efforts and capacity-building initiatives.
Provide clear guidelines for NTFP harvesting and benefit-sharing: Specify sustainable harvesting quantities and methods to prevent over-harvesting and safeguard resources for future generations. 

The NTFP Model Bylaw will result in:

Enhanced community resilience through sustainable NTFP management by promoting sustainable livelihoods, environmental conservation, and social cohesion. 
Clarified benefit-sharing mechanisms to reduce exploitation and promote transparency, fairness, and community ownership. 
Informed climate-resilient natural resource management by promoting sustainable harvesting, conserving biodiversity, and enhancing ecosystem resilience. 

Effective implementation of these regulations requires collaboration, capacity-building, and regular monitoring. If adopted and implemented successfully, these regulations could help grow NTFP activities in a way that increases livelihoods and builds community resilience to climate change in Zimbabwe.

Teaser Text
By generating income for rural communities, Zimbabwe’s NTFPs offer a market-led approach to boosting climate resilience.

Publish Date
Thu, 01/16/2025 – 12:00

Author(s)

Itayi Usaiwevhu

Hero Image
Rosella harvest (1).JPG

Blog Type
Blog Post

Strategic Objective

Adaptation

Region

Africa

Topic

Adaptation
Agriculture
Biodiversity Conservation
Deforestation and Commodity Production
Economic Growth
Forest/Forestry
Indigenous Peoples and Local Communities
Natural Climate Solutions
Resilience
Rural

Country

Zimbabwe

Sectors

Adaptation
Agriculture and Food Systems

Show Download Link
Off

0 Comments