Search

Photosynthesis inspires net-zero ammonia research

We are an online community created around a smart and easy to access information hub which is focused on providing proven global and local insights about sustainability

26 Aug, 2024

This post was originally published on Sustainability Matters

Scientists from UNSW Sydney have come up with a novel way to sustainably produce ammonia, inspired by the natural process of photosynthesis. Their research has been published in the Journal of Energy and Environmental Science.

Ammonia is a gas that is essential for producing the fertilisers that support global agriculture and food production. However, traditional methods of making ammonia create significant greenhouse gas emissions, since fossil fuels are required for the hydrogen production and energy that power the process.

“Traditional ammonia production requires high temperatures — around 400–500°C — and high pressure, historically necessitating the use of fossil fuels,” said UNSW Scientia Professor Rose Amal, from the School of Chemical Engineering.

To address this problem, teams led by Amal and Professor Xiaojing Hao, from the School of Photovoltaic and Renewable Energy Engineering, developed a way to generate ammonium ions from nitrate-containing wastewater using only a specially designed solar panel that works like an artificial leaf. Using a process known as photoelectrocatalytics (PEC), the researchers placed on the panel a nanostructured thin layer of copper and cobalt hydroxide that acted as a catalyst for the chemical reaction needed to produce ammonium nitrate from the wastewater.

In a real leaf, photosynthesis is the process by which plants use sunlight, water and carbon dioxide to create oxygen and energy in the form of sugar. This new photoelectrocatalytic process mimics photosynthesis, with the solar panel acting like an artificial leaf, using sunlight and nitrate-containing wastewater to create ammonium nitrate.

Artificial leaf system developed at UNSW to create ammonia from wastewater using only the sun. Image credit: Chen Han/UNSW.

The research team, which includes lead author Chen Han and Dr Jian Pan (a DECRA fellow), built a 40 cm2 artificial leaf system on the roof of Tyree Energy Technologies building at UNSW that has been able to produce ammonium ions that can satisfy 1.49 m2 of cropland.

“We think this new technology could be implemented on a relatively small scale in agricultural locations to produce ammonium onsite, which would decentralise the production process and further reduce CO2 emissions that are associated with the transportation process,” Amal said.

“Our findings provide a clean, efficient and cost-effective solution for utilising solar energy and chemical wastes to produce ammonia and other value-added products,” Han added.

“You do not need a high concentration of ammonia in fertiliser, so we believe the amounts of ammonia we are producing using our system make it a viable application in the real world, although we definitely still have some ways to further improve it.”

The researchers hope that the generation of the ammonium from the wastewater will allow the processed water to be used to irrigate crops and further help them to grow.

“It’s important to acknowledge that the wastewater we convert isn’t coming directly from municipal waste or runoff — it still needs to be processed first to filter out the organic matters and particulates,” Amal said.

“But we are hopeful that once we have generated ammonium from the nitrate wastewater, the treated water can then be put into irrigation.”

Amal is keen for further collaboration and involvement with potential industry partners to develop the process into a fully viable commercial system.

“Industry partners would help us scale up this device, and we definitely would like to utilise a full-scale, traditionally sized solar panel for our application,” she said.

“This is important for helping us reach our emissions targets of 2030 and 2040, and ultimately achieving net zero by 2050. We want to produce ammonia in a cleaner and greener way that minimises CO2 emissions.”

Top image caption: The photoelectrode utilising nanostructured thin layer of copper and cobalt hydroxide helps to create ammonia from wastewater using only the sun. Image credit: Chen Han/UNSW.

Pass over the stars to rate this post. Your opinion is always welcome.
[Total: 0 Average: 0]

You may also like…

Strengthening Community Resilience through Sustainable Non-Timber Forest Products

Strengthening Community Resilience through Sustainable Non-Timber Forest Products

Strengthening Community Resilience through Sustainable Non-Timber Forest Products
jschoshinski
Thu, 01/16/2025 – 18:32

In Zimbabwe, deforestation and habitat loss are not only threatening the country’s biodiversity and ability to mitigate climate change, but also threatening individuals’ livelihoods and their ability to adapt to climate change. Of the nearly 6,000 species of indigenous plants found in the country, some 900 of them are traditionally used as food, cosmetics, or medicine. These non-timber forest products (NTFPs) serve as supplemental sources of income for approximately 60 percent of rural households, providing an important source of income diversification as changes in rainfall—in part due to climate change—threaten traditional agricultural activities. By generating income for rural communities, Zimbabwe’s NTFPs offer a market-led approach to boosting climate resilience. 
The Economic Contribution of Non-Timber Forest Products in Zimbabwe 
In the landscapes where the USAID Resilience ANCHORS Activity works, one in six people, mostly women, rely on forests and wilderness areas for their livelihoods. Resilience ANCHORS supports community-led initiatives and locally prioritized interventions, including conserving forests and developing value chains for key NTFPs, such as Ximenia, mongongo nuts, wooden banana, marula, Kalahari melon seed, and rosella. Forest-based resources from remote, semi-arid regions can contribute up to 35 percent of rural incomes, while NTFP products like thatching grass, wild plant foods, mushrooms, honey, and mopane worms have an estimated annual subsistence value (i.e, the value associated with people using the products to support themselves rather than selling the products) of $294.3 million. Conserving these natural resources leads to strengthened livelihoods and healthier, more stable communities by supporting income diversification, which helps agricultural communities adapt to the impacts of climate change on crop yields.
Using Laws and Regulations to Strengthen Community Resilience
While NTFPs are vital resources for local communities, the lack of transparent laws and regulations has led to overexploitation and missed business opportunities. Limited awareness of the regulatory framework among stakeholders and community members exacerbates this issue. Resilience ANCHORS has supported the formation of NTFP collector groups that have developed formal governance structures, but the next objective is creating long-term sustainability through a robust legal framework that protects the environment and promotes community wellbeing. 
Sustainable harvesting remains critical for the long-term viability of Zimbabwe’s NTFPs, forests, and environment. Resilience ANCHORS, in collaboration with Zimbabwe’s Ministry of Local Government and the Environmental Management Agency, conducted workshops to build awareness of the legislative challenges and foster dialogue. This resulted in the drafting of NTFP Model Bylaw, which seeks to address three key goals:

Fill gaps in the legal framework: Outline benefit-sharing mechanisms to foster fair trade practices, as community ownership and management of NTFPs ensures equitable distribution among stakeholders. 
Promote sustainability: Develop permits to control harvesting, trade volumes, and fees to generate revenue for conservation efforts and capacity-building initiatives.
Provide clear guidelines for NTFP harvesting and benefit-sharing: Specify sustainable harvesting quantities and methods to prevent over-harvesting and safeguard resources for future generations. 

The NTFP Model Bylaw will result in:

Enhanced community resilience through sustainable NTFP management by promoting sustainable livelihoods, environmental conservation, and social cohesion. 
Clarified benefit-sharing mechanisms to reduce exploitation and promote transparency, fairness, and community ownership. 
Informed climate-resilient natural resource management by promoting sustainable harvesting, conserving biodiversity, and enhancing ecosystem resilience. 

Effective implementation of these regulations requires collaboration, capacity-building, and regular monitoring. If adopted and implemented successfully, these regulations could help grow NTFP activities in a way that increases livelihoods and builds community resilience to climate change in Zimbabwe.

Teaser Text
By generating income for rural communities, Zimbabwe’s NTFPs offer a market-led approach to boosting climate resilience.

Publish Date
Thu, 01/16/2025 – 12:00

Author(s)

Itayi Usaiwevhu

Hero Image
Rosella harvest (1).JPG

Blog Type
Blog Post

Strategic Objective

Adaptation

Region

Africa

Topic

Adaptation
Agriculture
Biodiversity Conservation
Deforestation and Commodity Production
Economic Growth
Forest/Forestry
Indigenous Peoples and Local Communities
Natural Climate Solutions
Resilience
Rural

Country

Zimbabwe

Sectors

Adaptation
Agriculture and Food Systems

Show Download Link
Off

Human Rights Watch Accuses UK of Undermining Democratic Rights With Crackdown on Climate Protesters

Human Rights Watch Accuses UK of Undermining Democratic Rights With Crackdown on Climate Protesters

The United Kingdom’s crackdown on climate protesters is setting a “dangerous” global precedent, according to the UK Director of Human Rights Watch (HRW) Yasmine Ahmed, reported The Guardian. British authorities are undermining democratic rights, particularly the right to protest peacefully, according to HRW’s World Report 2025. “Many of us had hoped that an incoming Labour […]
The post Human Rights Watch Accuses UK of Undermining Democratic Rights With Crackdown on Climate Protesters appeared first on EcoWatch.

0 Comments