Search

Heavy Metal Contaminants in the Ocean Can Become More Toxic Over Time, Study Finds

We are an online community created around a smart and easy to access information hub which is focused on providing proven global and local insights about sustainability

12 Oct, 2024

This post was originally published on Eco Watch

A new study is warning that trace metals like lead, arsenic and mercury that are present in ocean water can become more toxic over time as factors like ocean warming and acidity can increase the bioavailability of these trace elements.

Although these elements can naturally occur in coastal areas, their concentrations have increased due to human activities like agriculture and industrial manufacturing. Now, scientists warn that problems such as ocean acidification and warming are further strengthening the toxicity and spread of trace elements, both from natural and human sources.

“Human activities have increased the global flow of toxic metals such as lead by tenfold and mercury by three to seven times compared to pre-industrial levels,” Sylvia Sander, professor of marine mineral resources at GEOMAR, said in a statement. “Toxic elements like silver are increasingly detectable in coastal waters, originating from coal combustion and the growing use of silver nanoparticles in antibacterial products.” 

The researchers found that the effects of rising sea levels, ocean warming, melting sea ice, drying river beds and ocean acidification could all play roles in the transport and accumulation of trace elements, particularly those that occur naturally. The researchers published their findings in the journal Communications Earth & Environment.

Illustration of natural and anthropogenic sources, sinks and transport pathways of trace substances in coastal ecosystems that may interact with climate impacts. Red arrows indicate expected directions of change due to climate change. Zitoun et al. 2024

But trace elements from human sources are also contaminating the environment, with heavy metals coming into the oceans from fossil fuel and industry activities. Further, shipping and plastics can also introduce more trace elements into the oceans, especially because plastics can bind certain metals, including lead and copper.

As ocean temperatures rise, the bioavailability of trace elements increases, meaning it becomes easier for marine life to absorb the trace elements, the researchers explained. Trace elements, especially copper, also experience an increase in bioavailability and solubility in the presence of more acidic water. Copper can become extremely toxic to marine life in higher concentrations. 

In a recent report on planetary vital signs, a team of international scientists confirmed that ocean warming and acidification had reached record extremes in recent years.

The authors of the new report on trace elements noted that there are still significant research gaps on how the effects of climate change could also impact ocean contaminants. In response, the study authors are calling for expanding the research on new and under-studied contaminants, expanding geographical research coverage, and establishing laws and risk assessments on trace elements.

“To better understand the impacts on ecosystems and human health, we need to close knowledge gaps on the interactions between pollutants and climate change and develop standardized methods that provide globally comparable data,” said Rebecca Zitoun, co-lead author of the study and a marine chemist at GEOMAR Helmholtz Centre for Ocean Research Kiel.

The post Heavy Metal Contaminants in the Ocean Can Become More Toxic Over Time, Study Finds appeared first on EcoWatch.

Pass over the stars to rate this post. Your opinion is always welcome.
[Total: 0 Average: 0]

You may also like…

Energy Efficiency as an Imperative Climate Strategy

Energy Efficiency as an Imperative Climate Strategy

With mandatory climate statement disclosure rolling out in Australia, businesses need to start reporting on their emissions and sustainability plans for the future. As companies begin assessing the relevant risks and opportunities related to various climate scenarios, energy efficiency presents itself as an immediate climate-strategy with long-term benefits.

Commencing 1 January 2025, businesses that meet two of the three conditions — more than 500 employees, gross assets above $1 billion or $500 million or more in consolidated gross revenue — are required to lodge a climate statement, which discloses their climate-related plans, financial risks and obligations. As part of the gradual roll-out, by 1 July 2027, businesses that meet two of these conditions — more than 100 employees, gross assets above $25 million or exceeding $50 million in consolidated gross revenue — will also be required to report.

This climate statement will need to include the company’s sustainability governance, climate risks and opportunities, including those physical and transition related. They will also need to disclose their Scope 1 and 2 emissions, strategy to decarbonise, and conduct scenario analysis on the short, medium and long term impacts on the business. By the second year of reporting, businesses will also be expected to report on Scope 3 emissions.

Scenario analysis will be based on various assumptions of the state of the climate, one of which includes a possible future where global temperature has increased 2.5°C or more. They will be required to share their climate strategy and steps they are taking long-term in preparation for this scenario.

Common themes within climate strategies will include switching to renewable energy sources, electrifying fleet vehicles, purchasing carbon credits, and carbon capture and storage. Many of these methods look at reducing emissions through the energy source, or targeting the carbon aspect directly; however, climate strategies can also include reducing the amount of energy used. By investing in more energy efficient equipment, sites can maintain production whilst using less energy and producing less emissions.

When increasing energy efficiency and reducing energy consumption first, businesses will see short-term impacts; however, in the long term, they are also improving their foundation for an energy transition. Assuming no other changes, higher energy efficiency can lead to decreased energy demand, allowing for reduced system requirements when specifying and planning for self-generation or energy costs.

To understand what opportunities are available for upgrading to more energy efficient equipment, businesses can start with an energy audit to understand how energy is being consumed across site. Energy audits, like the ABB Energy Appraisal, can provide a roadmap for where and how equipment can be upgraded for the best energy saving potential. An energy audit identifies areas that can be immediately improved with existing equipment on the market, so there is no need to wait for the commercialization or development of more sustainable technology. Going beyond just changing all lights to LEDs, efficiency recommendations may include areas where variable speed drives can be added to control motor speed or upgrading from an IE3 motor to an IE5 ultra-premium efficiency or IE6 hyper-premium efficiency motor to reduce energy losses by 40% or more. This area can often be overlooked on sites as the Minimum Energy Performance Standard (MEPS) in Australia for motors is just IE2.

Mostly used in pumps, compressors, conveyors and fans, motors may seem like a minor part of a site; however, with 45% of the world’s electricity converted into motion by industrial electric motors, there are many opportunities for energy savings. In fact, a recent survey commissioned by ABB IEC Low voltage motors, showed that 92% of surveyed businesses in Australia recognize the important role of electric motors in achieving sustainability targets. In this same survey, participants ranked a reduction in operating cost as a more important driver for investing in energy efficiency than lowering their organization’s emissions. This is because upgrading to newer, more efficient equipment provides benefits beyond just emission reduction. For example, ABB’s Synchronous Reluctance (SynRM) Motors, available in IE5 ultra-premium efficiency or IE6 hyper-premium efficiency, use no rare earth metals or magnets. Running quieter and with bearing temperatures reduced by up to 15°C and winding temperatures by up to 30°, SynRM motors have longer maintenance periods, superior reliability, and contribute to a better operational environment.

Looking ahead, upgrading to an IE5 SynRM motor also provides more visibility into Scope 3 emissions, as SynRM motors meet ABB’s circularity criteria and transparency on environmental impact is provided through Environmental Product Declarations (EPDs).

By requiring companies to disclose their climate information, these new legal requirements are opening the door and facilitating more internal discussions on environmental impact and emission reduction. Whilst mandatory climate reporting is only required of large business entities this year, the progressive roll-out and Scope 3 emission reporting requirements mean that businesses of all sizes in Australia will be impacted by these new requirements. As businesses become more conscious of how sustainability should be integrated into their operations and finances, there is no better time to start investing in energy efficient solutions.

For more information, click here.

Image credit: iStock.com/denizunlusu

0 Comments