Search

Getting closer to a circular economy for plastics

We are an online community created around a smart and easy to access information hub which is focused on providing proven global and local insights about sustainability

06 Sep, 2024

This post was originally published on Sustainability Matters

A new catalytic process, developed at the University of California, Berkeley, works equally well with the two dominant types of post-consumer plastic waste: polyethylene, the component of most single-use plastic bags; and polypropylene, the component of hard plastics, from microwavable dishes to luggage. It also efficiently degrades a mix of these types of plastics.

Clear plastic water bottles made of polyethylene tetraphthalate (PET), a polyester, were designed in the 1980s to be recycled this way. But the volume of polyester plastics is minuscule compared to that of polyethylene and polypropylene plastics, referred to as polyolefins.

“We have an enormous amount of polyethylene and polypropylene in everyday objects, from lunch bags to laundry soap bottles to milk jugs — so much of what’s around us is made of these polyolefins,” said John Hartwig, a UC Berkeley professor of chemistry who led the research. “What we can now do, in principle, is take those objects and bring them back to the starting monomer by chemical reactions we’ve devised that cleave the typically stable carbon–carbon bonds. By doing so, we’ve come closer than anyone to give the same kind of circularity to polyethylene and polypropylene that you have for polyesters in water bottles.”

Hartwig, together with graduate student Richard J “RJ” Conk, chemical engineer Alexis Bell, who is a UC Berkeley Professor of the Graduate School, and their colleagues, has now published the details of the catalytic process in the journal Science.

Like a string of pearls

One key advantage of the new catalysts is that they avoid the need to remove hydrogen to form a breakable carbon–carbon double bond in the polymer, which was a feature of the researchers’ earlier process to deconstruct polyethylene. Such double bonds are an Achilles heel of a polymer, in the same way that the reactive carbon–oxygen bonds in polyester or PET make the plastic easier to recycle. Polyethylene and polypropylene don’t have this Achilles heel — their long chains of single carbon bonds are very strong.

“Think of the polyolefin polymer like a string of pearls,” Hartwig said. “The locks at the end prevent them from falling out. But if you clip the string in the middle, now you can remove one pearl at a time.”

The two catalysts together turned a nearly equal mixture of polyethylene and polypropylene into propylene and isobutylene — both gases at room temperature — with an efficiency of nearly 90%. For polyethylene or polypropylene alone, the yield was even higher.

Conk added plastic additives and different types of plastics to the reaction chamber to see how the catalytic reactions were affected by contaminants. Small amounts of these impurities barely affected the conversion efficiency, but small amounts of PET and polyvinyl chloride — PVC — significantly reduced the efficiency. This may not be a problem, however, because recycling methods already separate plastics by type.

 Conk adjusts a reaction chamber in which mixed plastics are degraded into the reusable building blocks of new polymers. Image credit: Robert Sanders/UC Berkeley.

Hartwig noted that while many researchers are hoping to redesign plastics from the ground up to be easily reused, today’s hard-to-recycle plastics will be a problem for decades.

“One can argue that we should do away with all polyethylene and polypropylene and use only new circular materials. But the world’s not going to do that for decades and decades. Polyolefins are cheap, and they have good properties, so everybody uses them,” Hartwig said. “People say if we could figure out a way to make them circular, it would be a big deal, and that’s what we’ve done. One can begin to imagine a commercial plant that would do this.”

The researchers believe the process, if scaled up, could help bring about a circular economy for many throwaway plastics, thereby reducing the fossil fuels used to make new plastics.

Top image credit: iStock.com/Andreas Steidlinger

Pass over the stars to rate this post. Your opinion is always welcome.
[Total: 0 Average: 0]

You may also like…

ABB receives EPD status for gearless mill drive ring motor

ABB receives EPD status for gearless mill drive ring motor

ABB has gained Environmental Product Declaration (EPD) status for its Gearless Mill Drive (GMD) ring motor — technology used to drive large grinding mills in the mining industry.

An EPD is a standardised document that provides detailed information about the environmental impact of a product throughout its life cycle. Based on a comprehensive Life Cycle Assessment (LCA) study, the EPD highlights ABB’s commitment to transparency, environmental responsibility and supporting customers in making informed decisions on sustainability in their supply chains.

ABB analysed the environmental impact of a ring motor across its entire life cycle from supply chain and production to usage and end-of-life disposal. The study was conducted for a ring motor of a semi-autogenous grinding (SAG) mill with an installed power of 24 MW and was based on a reference service life of 25 years.

“Sustainability is at the core of our purpose at ABB, influencing how we operate and innovate for customers,” said Andrea Quinta, Sustainability Specialist at ABB. “By earning the Environmental Product Declaration for our ring motor, we emphasise our environmental stewardship and industry leadership for this technology. We adhered to the highest standards throughout this process, as we do in the ABB Ring Motor factory every day. This recognition highlights to the mining industry what they are bringing into their own operations when they work with ABB.”

The comprehensive LCA was conducted at ABB’s factory in Bilbao, Spain, and was externally verified and published in accordance with international standards ISO 14025 and ISO 14040/14044. It will remain valid for five years.

The ring motor, a key component of the GMD, is a drive system without any gears where the transmission of the torque between the motor and the mill is done through the magnetic field in the air gap between the motor stator and the motor rotor. It optimises grinding applications in the minerals and mining industries by enabling variable-speed operation, leading to energy and cost savings.

The full EPD for the ABB GMD Ring Motor can be viewed on EPD International.

Bee Hotels Can Help Native Pollinators Recover in the Wake of Climate-Fueled Wildfires: Study

Bee Hotels Can Help Native Pollinators Recover in the Wake of Climate-Fueled Wildfires: Study

Wild pollinator populations are declining all over the world, with increasingly severe climate change-fueled wildfires threatening their survival. These intense wildfires are also putting long-term ecosystem health and biodiversity at risk. Bee hotels are artificial nesting structures that have been specially designed to house cavity-nesting species. Often placed in backyards or gardens, they provide safe […]
The post Bee Hotels Can Help Native Pollinators Recover in the Wake of Climate-Fueled Wildfires: Study appeared first on EcoWatch.

0 Comments