Search

Getting closer to a circular economy for plastics

We are an online community created around a smart and easy to access information hub which is focused on providing proven global and local insights about sustainability

06 Sep, 2024

This post was originally published on Sustainability Matters

A new catalytic process, developed at the University of California, Berkeley, works equally well with the two dominant types of post-consumer plastic waste: polyethylene, the component of most single-use plastic bags; and polypropylene, the component of hard plastics, from microwavable dishes to luggage. It also efficiently degrades a mix of these types of plastics.

Clear plastic water bottles made of polyethylene tetraphthalate (PET), a polyester, were designed in the 1980s to be recycled this way. But the volume of polyester plastics is minuscule compared to that of polyethylene and polypropylene plastics, referred to as polyolefins.

“We have an enormous amount of polyethylene and polypropylene in everyday objects, from lunch bags to laundry soap bottles to milk jugs — so much of what’s around us is made of these polyolefins,” said John Hartwig, a UC Berkeley professor of chemistry who led the research. “What we can now do, in principle, is take those objects and bring them back to the starting monomer by chemical reactions we’ve devised that cleave the typically stable carbon–carbon bonds. By doing so, we’ve come closer than anyone to give the same kind of circularity to polyethylene and polypropylene that you have for polyesters in water bottles.”

Hartwig, together with graduate student Richard J “RJ” Conk, chemical engineer Alexis Bell, who is a UC Berkeley Professor of the Graduate School, and their colleagues, has now published the details of the catalytic process in the journal Science.

Like a string of pearls

One key advantage of the new catalysts is that they avoid the need to remove hydrogen to form a breakable carbon–carbon double bond in the polymer, which was a feature of the researchers’ earlier process to deconstruct polyethylene. Such double bonds are an Achilles heel of a polymer, in the same way that the reactive carbon–oxygen bonds in polyester or PET make the plastic easier to recycle. Polyethylene and polypropylene don’t have this Achilles heel — their long chains of single carbon bonds are very strong.

“Think of the polyolefin polymer like a string of pearls,” Hartwig said. “The locks at the end prevent them from falling out. But if you clip the string in the middle, now you can remove one pearl at a time.”

The two catalysts together turned a nearly equal mixture of polyethylene and polypropylene into propylene and isobutylene — both gases at room temperature — with an efficiency of nearly 90%. For polyethylene or polypropylene alone, the yield was even higher.

Conk added plastic additives and different types of plastics to the reaction chamber to see how the catalytic reactions were affected by contaminants. Small amounts of these impurities barely affected the conversion efficiency, but small amounts of PET and polyvinyl chloride — PVC — significantly reduced the efficiency. This may not be a problem, however, because recycling methods already separate plastics by type.

 Conk adjusts a reaction chamber in which mixed plastics are degraded into the reusable building blocks of new polymers. Image credit: Robert Sanders/UC Berkeley.

Hartwig noted that while many researchers are hoping to redesign plastics from the ground up to be easily reused, today’s hard-to-recycle plastics will be a problem for decades.

“One can argue that we should do away with all polyethylene and polypropylene and use only new circular materials. But the world’s not going to do that for decades and decades. Polyolefins are cheap, and they have good properties, so everybody uses them,” Hartwig said. “People say if we could figure out a way to make them circular, it would be a big deal, and that’s what we’ve done. One can begin to imagine a commercial plant that would do this.”

The researchers believe the process, if scaled up, could help bring about a circular economy for many throwaway plastics, thereby reducing the fossil fuels used to make new plastics.

Top image credit: iStock.com/Andreas Steidlinger

Pass over the stars to rate this post. Your opinion is always welcome.
[Total: 0 Average: 0]

You may also like…

Vegetable oil waste sees new life through WORLD project

Vegetable oil waste sees new life through WORLD project

The Politecnico di Milano, coordinator of the Waste Oils RecycLe and Development (WORLD) project, proposes a circular and sustainable process to turn used vegetable oil into a valuable resource.

Vegetable oil is used widely around the world, and cooking and food preservation is said to generate a huge amount of waste oil. Around four million tonnes of used vegetable oil are produced in Europe each year, representing just 4% of the total global amount of the widespread product. If not properly disposed of, the waste can lead to significant environmental impacts.

The goal of the WORLD project is to optimise waste vegetable oil treatment processes while improving the quality of end products, reducing waste and fostering European independence in the supply of critical raw materials.

The project proposes to recycle used vegetable oil, yielding materials used as bio-lubricants, air purification devices and fine chemical components from petroleum-free precursors. These applications are presented as a supply chain parallel to their well-known use in the production of biodiesel, although this is limited by law to 10% and concerns only the purest fraction of the waste.

In addition to economic and technological benefits, the project has a strong social and environmental impact: raising awareness of correct waste oil collection can reduce public costs related to incorrect disposal and prevent environmental damage. In addition, a life cycle analysis (LCA) will be conducted to assess the best strategies to minimise ecological, economic and social impacts by adopting a ‘zero waste’ approach.

The project study was published by the British Royal Society of Chemistry in the international journal RSC Sustainability.

“We started by observing that the waste vegetable oil recycling industry is currently based on simple decantation and filtration processes, without adequate scientific optimisation. We therefore analysed two alternative techniques — bentonite treatment and water washing — to improve their efficiency and reduce their environmental impact,” explained study co-author Andrea Mele, from the ‘G. Natta’ Department of Chemistry, Materials and Chemical Engineering at the Politecnico di Milano.

“Through an experimental approach based on the design of experiments (DoE) methodology and multivariate statistical analysis, we optimised key parameters such as temperature, pH, bentonite concentration and oil-to-water ratio. The results showed that washing with water at 75°C and pH 6 guarantees the best performance in terms of yield, productivity and environmental sustainability, minimising the production of waste and the carbon impacts of the process,” continued co-author Alberto Mannu, who recently transferred from the Politecnico di Milano to the Department of Mechanical and Industrial Engineering at the University of Brescia.

Thanks to the WORLD project, a mathematical model developed from the collected data yields predictions of equivalent CO2 emissions according to operating conditions, providing the recycling industry with a practical tool for optimising processes in line with environmental certification standards.

This scientifically validated approach marks a step forward in the transition towards an efficient and sustainable circular economy. It is said to form part of the key principles of green chemistry, open new prospects for sustainability and efficiency, and may be highly competitive from a technical/economic perspective in models of the circular economy.

The WORLD project was funded by the European Union under the H2020-MSCA program. The consortium, which is coordinated by Politecnico di Milano, includes the Universities in Burgos (Spain) and Dunkirk (France), LUT University (Finland), and the Universities of Sassari and Brescia, together with non-academic partners in Spain and Italy.

Image credit: iStock.com/Rosendo Serrano Valera

The 2023 GreenBiz 30 Under 30

The 2023 GreenBiz 30 Under 30

The honorees in our eighth year of the GreenBiz 30 Under 30 represent an array of geographies across most continents — from the United Arab Emirates to the United States.
The post The 2023 GreenBiz 30 Under 30 appeared first on Trellis.

In ‘Electric Garden,’ Ricky Boscarino Leads a Tour of His Whimsical Handbuilt Home

In ‘Electric Garden,’ Ricky Boscarino Leads a Tour of His Whimsical Handbuilt Home

The self-described “madcap” artist’s elaborately ornamented home evokes a whimsical fairytale dwelling.
Do stories and artists like this matter to you? Become a Colossal Member today and support independent arts publishing for as little as $7 per month. The article In ‘Electric Garden,’ Ricky Boscarino Leads a Tour of His Whimsical Handbuilt Home appeared first on Colossal.

0 Comments