Search

Decarbonising the industrial process sector

We are an online community created around a smart and easy to access information hub which is focused on providing proven global and local insights about sustainability

26 Aug, 2024

This post was originally published on Sustainability Matters

Researchers at Stanford Engineering have designed and demonstrated a new type of thermochemical reactor that is capable of generating the immense heat required for many industrial processes with fewer carbon emissions. The electrified design, published in Joule, is also claimed to be smaller, cheaper and more efficient than existing fossil fuel technology.

“We have an electrified and scalable reactor infrastructure for thermochemical processes that features ideal heating and heat-transfer properties,” said Jonathan Fan, an associate professor of electrical engineering at Stanford and senior author on the paper. “Essentially, we’re pushing reactor performance to its physical limits, and we’re using green electricity to power it.”

Magnetic way to heat

Most standard thermochemical reactors work by burning fossil fuels to heat a fluid, which then flows into pipes in the reactor — like a boiler sending hot water to cast iron radiators in an old house, but with better insulation and at much higher temperatures. This requires a large amount of infrastructure and there are many opportunities to lose heat along the way.

The electrified reactor uses magnetic induction to generate heat — the same sort of process used in induction stoves. Instead of having to transport heat through pipes, induction heating creates heat internally within the reactor, by taking advantage of interactions between electric currents and magnetic fields. If you wanted to inductively heat up a steel rod, for example, you could wrap a wire around it and run an alternating current through the coil. These currents create an oscillating magnetic field which, in turn, induces a current in the steel. And because steel is not a perfect conductor of electricity, some of that current turns into heat. This method effectively heats the whole piece of steel at the same time, rather than creating heat from the outside in.

This image depicts the inductively heated metamaterial reactor with catalysts filling the ceramic foam baffle. It is producing carbon monoxide and water from the reverse water gas shift reaction. Image credit: Dolly Mantle.

Adapting induction heating for the chemicals industry is not as easy as just turning up the heat. Industrial reactors need to evenly create and distribute heat in a three-dimensional space and be much more efficient than the average stovetop. The researchers determined that they could maximise their efficiency by using particularly high frequency currents, which alternate very quickly, in conjunction with reactor materials that are particularly bad conductors of electricity.

The researchers used new, high-efficiency electronics developed by Juan Rivas-Davila, an associate professor of electrical engineering and co-author on the paper, to produce the currents they required. They then used those currents to inductively heat a three-dimensional lattice made of a poorly conducting ceramic material in the core of their reactor. The lattice structure is just as important as the material itself, Fan said, because the lattice voids artificially lower the electrical conductivity even further. And those voids can be filled with catalysts — the materials that need to be heated to initiate chemical reactions. This makes for even more efficient heat transfer and means the electrified reactor can be much smaller than traditional fossil fuel reactors.

“You’re heating a large surface area structure that is right next to the catalyst, so the heat you’re generating gets to the catalyst very quickly to drive the chemical reactions,” Fan said. “Plus, it’s simplifying everything. You’re not transferring heat from somewhere else and losing some along the way, you don’t have any pipes going in and out of the reactor — you can fully insulate it. This is ideal from an energy management and cost point of view.”

Capturing industrial applications

The researchers used the reactor to power a chemical reaction, called the reverse water gas shift reaction, using a new sustainable catalyst developed by Matthew Kanan, a professor of chemistry in the School of Humanities and Sciences and co-author of the paper. The reaction, which requires high heat, can turn captured carbon dioxide into a valuable gas that can be used to create sustainable fuels. In the proof-of-concept demonstration, the reactor was over 85% efficient, indicating that it converted almost all electrical energy into usable heat. The reactor also demonstrated ideal conditions for facilitating the chemical reaction — carbon dioxide was converted to usable gas at the theoretically predicted rate, which is often not the case with new reactor designs.

“As we make these reactors even larger or operate them at even higher temperatures, they just get more efficient,” Fan said. “That’s the story of electrification — we’re not just trying to replace what we have, we’re creating even better performance.”

Fan, Rivas-Davila, Kanan and their colleagues are already working to scale up their new reactor technology and expand its potential applications. They are adapting the same ideas to design reactors for capturing carbon dioxide and for manufacturing cement, and they are working with industrial partners in the oil and gas industries to understand what those companies would need to adopt this technology. They are also conducting economic analyses to understand what system-wide sustainable solutions would look like and how they could be made more affordable.

“Electrification affords us the opportunity to reinvent infrastructure, breaking through existing bottlenecks and shrinking and simplifying these types of reactors, in addition to decarbonising them,” Fan said. “Industrial decarbonisation is going to require new, systems-level approaches, and I think we’re just getting started.”

Image credit: iStock.com/tommy

Pass over the stars to rate this post. Your opinion is always welcome.
[Total: 0 Average: 0]

You may also like…

Strengthening Community Resilience through Sustainable Non-Timber Forest Products

Strengthening Community Resilience through Sustainable Non-Timber Forest Products

Strengthening Community Resilience through Sustainable Non-Timber Forest Products
jschoshinski
Thu, 01/16/2025 – 18:32

In Zimbabwe, deforestation and habitat loss are not only threatening the country’s biodiversity and ability to mitigate climate change, but also threatening individuals’ livelihoods and their ability to adapt to climate change. Of the nearly 6,000 species of indigenous plants found in the country, some 900 of them are traditionally used as food, cosmetics, or medicine. These non-timber forest products (NTFPs) serve as supplemental sources of income for approximately 60 percent of rural households, providing an important source of income diversification as changes in rainfall—in part due to climate change—threaten traditional agricultural activities. By generating income for rural communities, Zimbabwe’s NTFPs offer a market-led approach to boosting climate resilience. 
The Economic Contribution of Non-Timber Forest Products in Zimbabwe 
In the landscapes where the USAID Resilience ANCHORS Activity works, one in six people, mostly women, rely on forests and wilderness areas for their livelihoods. Resilience ANCHORS supports community-led initiatives and locally prioritized interventions, including conserving forests and developing value chains for key NTFPs, such as Ximenia, mongongo nuts, wooden banana, marula, Kalahari melon seed, and rosella. Forest-based resources from remote, semi-arid regions can contribute up to 35 percent of rural incomes, while NTFP products like thatching grass, wild plant foods, mushrooms, honey, and mopane worms have an estimated annual subsistence value (i.e, the value associated with people using the products to support themselves rather than selling the products) of $294.3 million. Conserving these natural resources leads to strengthened livelihoods and healthier, more stable communities by supporting income diversification, which helps agricultural communities adapt to the impacts of climate change on crop yields.
Using Laws and Regulations to Strengthen Community Resilience
While NTFPs are vital resources for local communities, the lack of transparent laws and regulations has led to overexploitation and missed business opportunities. Limited awareness of the regulatory framework among stakeholders and community members exacerbates this issue. Resilience ANCHORS has supported the formation of NTFP collector groups that have developed formal governance structures, but the next objective is creating long-term sustainability through a robust legal framework that protects the environment and promotes community wellbeing. 
Sustainable harvesting remains critical for the long-term viability of Zimbabwe’s NTFPs, forests, and environment. Resilience ANCHORS, in collaboration with Zimbabwe’s Ministry of Local Government and the Environmental Management Agency, conducted workshops to build awareness of the legislative challenges and foster dialogue. This resulted in the drafting of NTFP Model Bylaw, which seeks to address three key goals:

Fill gaps in the legal framework: Outline benefit-sharing mechanisms to foster fair trade practices, as community ownership and management of NTFPs ensures equitable distribution among stakeholders. 
Promote sustainability: Develop permits to control harvesting, trade volumes, and fees to generate revenue for conservation efforts and capacity-building initiatives.
Provide clear guidelines for NTFP harvesting and benefit-sharing: Specify sustainable harvesting quantities and methods to prevent over-harvesting and safeguard resources for future generations. 

The NTFP Model Bylaw will result in:

Enhanced community resilience through sustainable NTFP management by promoting sustainable livelihoods, environmental conservation, and social cohesion. 
Clarified benefit-sharing mechanisms to reduce exploitation and promote transparency, fairness, and community ownership. 
Informed climate-resilient natural resource management by promoting sustainable harvesting, conserving biodiversity, and enhancing ecosystem resilience. 

Effective implementation of these regulations requires collaboration, capacity-building, and regular monitoring. If adopted and implemented successfully, these regulations could help grow NTFP activities in a way that increases livelihoods and builds community resilience to climate change in Zimbabwe.

Teaser Text
By generating income for rural communities, Zimbabwe’s NTFPs offer a market-led approach to boosting climate resilience.

Publish Date
Thu, 01/16/2025 – 12:00

Author(s)

Itayi Usaiwevhu

Hero Image
Rosella harvest (1).JPG

Blog Type
Blog Post

Strategic Objective

Adaptation

Region

Africa

Topic

Adaptation
Agriculture
Biodiversity Conservation
Deforestation and Commodity Production
Economic Growth
Forest/Forestry
Indigenous Peoples and Local Communities
Natural Climate Solutions
Resilience
Rural

Country

Zimbabwe

Sectors

Adaptation
Agriculture and Food Systems

Show Download Link
Off

Human Rights Watch Accuses UK of Undermining Democratic Rights With Crackdown on Climate Protesters

Human Rights Watch Accuses UK of Undermining Democratic Rights With Crackdown on Climate Protesters

The United Kingdom’s crackdown on climate protesters is setting a “dangerous” global precedent, according to the UK Director of Human Rights Watch (HRW) Yasmine Ahmed, reported The Guardian. British authorities are undermining democratic rights, particularly the right to protest peacefully, according to HRW’s World Report 2025. “Many of us had hoped that an incoming Labour […]
The post Human Rights Watch Accuses UK of Undermining Democratic Rights With Crackdown on Climate Protesters appeared first on EcoWatch.

0 Comments