Search

Cybersecurity is about more aspects of ESG than just governance

We are an online community created around a smart and easy to access information hub which is focused on providing proven global and local insights about sustainability

25 Jun, 2025

This post was originally published on Sustainability Matters

Security operations teams must increasingly do their bit to help their employers achieve environmental targets, which may require some system and strategic changes.

For several years now, annual sustainability reports by listed Australian companies have provided a window into cybersecurity strategies employed at these companies. But in spite of the report name, there is often no link between security and sustainability in the information presented.

As these reports cover environmental, social and governance (ESG) practices, addressing cyber risks comes under the governance piece. Yet, the security team — through its choices of hardware, software and services — has a contribution to make on the sustainability front as well.

It is commonly acknowledged that IT infrastructure and data centres are large energy users. Teams in these spaces have worked to become more efficient: rightsizing infrastructure provisioning to fit workloads, utilising more renewable energy sources, hosting equipment in data centres that are rated to be efficient with power and water consumption and the like.

That same level of investment and effort is yet to be brought to bear on the work of the security team and their technology stack. One reason for this is likely to be the intense pressure that security teams are under to protect ever-increasing attack surfaces and ward off a constantly evolving spectrum of cyber threats.

But this is likely to change.

Security teams need to be prepared to contribute to more than the governance aspect of ESG — they need to contribute to the environmental goals of the organisation as well.

This is starting to be seen in several initiatives. These include the adoption and implementation of more energy-efficient security systems, together with a greater emphasis on proactive and preventative security.

Energy-efficient systems

As with other types of information technology, it continues to be the case that the efficiency of security systems is improving over time with each iteration or update.

A key performance indicator is the energy consumption per gigabit of data throughput for a piece of equipment. Next-generation security gateways are a security-specific example of hardware that continues to get more efficient with each new generation of the technology.

As a case in point, a recent Check Point ESG report showed that a current-generation security gateway uses 73% less power consumption per throughput (Gbps) compared to the previous model. This reduction comes alongside a 112% improvement in threat prevention capabilities, meaning the newer version is more efficient than its predecessor in multiple contexts, not just in energy usage concerns. And, to be clear, this kind of improvement is seen consistently between versions of systems.

This illustrates that next-generation security technologies can simultaneously enhance protection and energy efficiency. By aligning to this cadence of technology upgrades, organisations can consistently reduce their environmental footprint while maintaining effective security controls.

Proactive detection and remediation

Another beneficial strategy when seeking to run security operations more efficiently is to focus more on preventative and proactive forms of security.

The logic here is that reactively dealing with security incidents is an intensive exercise. It is taxing on the individuals that have to perform this work, but also in financial terms. We know that the financial implications of a breach continue to increase over time. One aspect of financial implication is the energy-intensive processes such as restoring backups, along with rebooting, restoring and/or rebuilding entire systems.

Clearly, energy efficiency is not the primary goal of incident response. But from a broader ESG perspective, there is interest in organisations having strong cyber risk and security controls together with layered protections in place to mitigate against the risk of an attack, and/or to detect and isolate any infected infrastructure early on, such that any financial, productivity and bottom-line costs can be avoided. As energy is a considerable financial input to IT costs, it makes sense not to add to these costs due to a cyber incident taking place.

Preventative measures are also required because some existing and emerging types of attacks can run up big energy bills if they go undetected. Cryptomining malware, for example, remains a persistent threat despite its peak in 2018 when it affected 40% of analysed organisations. Even recently, malware such as XMRig has been detected targeting gaming engines. The collective energy consumption of cryptomining is estimated at a staggering 125 terawatt-hours annually — highlighting the need to quickly detect this kind of malicious payload before it can be used to run up a big bill.

Data poisoning in AI systems represents another emerging concern. These attacks compromise machine learning models, often requiring complete retraining to remediate — an extremely energy-intensive process. As organisations increasingly rely on AI-powered tools for decision-making, protecting these systems also means avoiding redundant and costly training cycles that consume substantial computational resources.

The combined benefit

Cybersecurity is more than a governance play — it also has a growing role in helping meet the environmental aspects of an organisation’s ESG strategy. By considering the energy implications of security operations, maintaining infrastructure that is both secure and sustainable, and prioritising a proactive security approach, organisations can protect both their business interests and environmental resources.

Les Williamson, Regional Director Australia and New Zealand, Check Point Software Technologies

Top image credit: iStock.com/Vertigo3d

Pass over the stars to rate this post. Your opinion is always welcome.
[Total: 0 Average: 0]

You may also like…

Extreme Weather Is Now Normal Weather in the UK: Met Office Report

Extreme Weather Is Now Normal Weather in the UK: Met Office Report

Extreme heat, excessive rainfall, ongoing droughts — these conditions are now considered the new normal, according to the latest State of the UK Climate report from the UK Met Office. The report highlights several alarming trends, including warming at the rate of 0.25°C per decade in the UK. The past three consecutive years have ranked […]
The post Extreme Weather Is Now Normal Weather in the UK: Met Office Report appeared first on EcoWatch.

Battery life and EV cybersecurity projects receive funding

Battery life and EV cybersecurity projects receive funding

Swinburne University of Technology researchers have been awarded close to $920,000 to advance two projects for battery life and EV cybersecurity, securing a portion of over $46 million shared across 75 new projects.

The university received the funding in the latest round of Australian Research Council’s (ARC) Linkage Projects 2024. The scheme, part of the ARC’s National Competitive Grants Program, funds research that delivers practical benefits and strengthens Australia’s innovation and industry capabilities.

Swinburne’s Deputy Vice Chancellor Research, Professor Karen Hapgood, said, “These projects demonstrate how our researchers are partnering with industry to deliver practical solutions, from extending the life of battery systems to securing Australia’s electric vehicle infrastructure. It’s a powerful example of how university research is driving innovation and supporting a more sustainable, technologically advanced future.”

The first of the two projects, led by Professor Weixiang Shen, received $449,882 to extend the lifetime of battery energy storage systems for power grids.

“This project will enable my team to develop an innovative control strategy to actively manage the operating conditions of an individual battery cell using digital twin technology. It offers an excellent opportunity to implement and validate our approach in inverter-less battery energy storage systems provided by our industry partner, which uniquely enables cell-level control within the system,” Shen said.

“The project’s outcomes will strengthen Australia’s leadership in advanced energy storage technologies, support the growth of the domestic manufacturing sector, and contribute to the creation of high-skilled jobs.”

Aiming to enhance energy storage performance, the three-year project will develop new strategies to slow battery aging within each cell. It will use digital twin technology, combining deep learning and electrochemical modelling, to predict the impact of operating conditions on battery aging and regulate these conditions to control the aging process and extend battery life.

Working in partnership with Relectrify Pty Ltd, the project team will support Australia’s transition to sustainable energy by delivering longer battery life and reduced downtime so that battery systems can produce more over time.

The second project, led by Professor Yang Xiang, received $474,531 to address cybersecurity challenges in electric vehicle charging stations.

“This grant will allow my team to build advanced cybersecurity tools that address the challenges posed by the interaction between EV charging stations, diverse EVs, the national power grid and wireless communication protocols,” Xiang said.

“It creates a unique opportunity to generate novel research insights, validate solutions in real-world settings, and produce tools with strong commercialisation potential. Its outcomes support sustainable economic growth by enabling the safe uptake of EVs, reducing emissions and creating jobs.”

Electric vehicle charging stations are widely deployed, but they face complex security risks due to the diversity of electric vehicles, their connection to the power grid, and wireless communication with users. The three-year project aims to address these challenges by functionality-guided, update-guided and greybox-guided fuzzing techniques.

Working in partnership with T-POWER Pty Ltd, the project team will explore methods for testing charging stations and developing advanced tools to secure EV infrastructure and improve cybersecurity within Australia’s expanding sustainable transport sector.

Image credit: iStock.com/narvo vexar

“They’re Turning Pollution Into Candy!”: Chinese Scientists Stun the World by Making Food from Captured Carbon Emissions

IN A NUTSHELL 🌱 Chinese researchers have developed a groundbreaking method to convert methanol into sucrose, bypassing traditional agriculture. 🔬 The innovative in vitro biotransformation (ivBT) system uses enzymes to transform methanol derived from industrial waste into complex sugars. 🌍 This method contributes to sustainability by utilizing carbon dioxide as a raw material, supporting carbon […]
The post “They’re Turning Pollution Into Candy!”: Chinese Scientists Stun the World by Making Food from Captured Carbon Emissions appeared first on Sustainability Times.

0 Comments