Search

Battery-Buffered EV Charging

We are an online community created around a smart and easy to access information hub which is focused on providing proven global and local insights about sustainability

05 Nov, 2024

This post was originally published on Power Sonic

The electric vehicle (EV) revolution is driving rapid growth in charging infrastructure, posing new challenges for grid capacity, deployment speed, and cost. Battery-buffered EV charging systems offer a breakthrough solution to these challenges, expanding efficient, cost-effective charging infrastructure without overburdening the electric grid. This technology is changing how cities, businesses, and fleet operators build and manage EV charging networks, paving the way for widespread electric vehicle adoption.

What is Battery-Buffered EV Charging?

Battery-buffered EV charging utilizes energy storage to bridge the gap between grid limitations and charging demands. These systems can either be all-in-one charging systems with fully integrated batteries or can include separate battery energy storage systems working in combination with EV charging stations. These systems store power from the grid during low-demand periods and release it during peak charging times. They maintain a steady draw from the grid while delivering high-power charging to vehicles. Unlike traditional EV charging stations that pull their full load from the grid all at once, battery-buffered systems separate grid power needs from vehicle charging demands, allowing high-power charging even in areas with limited grid capacity.

Key Financial Benefits: Significant Cost Savings

Battery-buffered electric vehicle charging offers compelling cost advantages by reducing the need for costly grid upgrades. Traditional charging infrastructure often requires significant investments in substations and power distribution equipment. Still, battery-buffered systems reduce or eliminate these needs.

For example, a project evaluated by NREL for the DOT for four 150 kW DC fast charging stations estimated that project costs, including a small substation, would be $4 million. However, utilizing energy storage instead would reduce project costs to around $1.2-$1.5 million, a 65% savings. Beyond initial capital savings, these systems reduce operational energy costs through demand charge management.

The below table shows the estimated project cost comparison from NREL.

Line Item Substation Upgrade Approach Battery-Buffered EV Charging Approach
DC Fast Charging Stations $1,000,000 $1,000,000
Battery Energy Storage System $200,000 – $500,000
Substation (small) $3,000,000
Total Project Cost* $4,000,000 $1,200,000 – $1,500,000
Timeline 3-6 years 1-2 years
*Most federally funded programs that support EV charging do not consider grid infrastructure upgrades, such as a substation, as an eligible cost. Some federally funded programs may support energy storage systems as an eligible cost, which can reduce the total project cost.

By charging batteries during off-peak times when rates are lower, operators can avoid high-demand fees, which often make up a large part of operational expenses. In some markets, battery-buffered stations can earn additional revenue by participating in demand-side response programs, opening new income streams that traditional EV charging stations cannot access.

Enhanced Operational Efficiency: Smarter Power Management

Battery-buffered systems revolutionize day-to-day charging operations by optimizing power management. They can dynamically allocate power to multiple charging ports based on demand, ensuring efficient energy distribution. This real-time allocation enables charging stations to serve more vehicles simultaneously while maintaining charging speeds.

Battery-buffered systems also make it easier to incorporate renewable energy sources. Solar or wind energy can be stored in batteries during high production periods and used for vehicle charging when renewable production is low. This approach reduces reliance on grid electricity, making operations more sustainable and economical.

Accelerated Deployment: Faster Infrastructure Expansion

One of the standout advantages of battery-buffered charging is its rapid deployment capability. Unlike traditional charging infrastructure, which can take 3–6 years to deploy due to utility upgrades and permitting processes, battery-buffered systems can be installed in as little as 1–2 years. This shortened timeline allows organizations to respond quickly to growing EV demand without waiting for major grid improvements.

Battery-buffered systems also simplify regulatory approvals, as they place less strain on the grid. This streamlined process can save months or even years, allowing charging infrastructure to be rolled out rapidly, especially in high-priority areas with limited grid capacity.

Flexibility and Scalability: Adapting to Demand

Battery-buffered systems offer unmatched flexibility in scaling and placement. Their modular design allows organizations to start with a few charging ports and expand as demand grows without major grid upgrades. This phased approach keeps infrastructure costs manageable, especially in areas where EV adoption may be more gradual.
Battery-buffered systems also open up new locations for charging stations, including remote or urban areas with limited grid access. This location flexibility expands options for charging station placement, supporting a broader and more accessible charging network.

Video explainer of battery-buffered EV charging

Minimizing Grid Upgrades: Protecting Infrastructure

According to an analysis by NREL, battery-buffered EV charging systems reduce the need for grid upgrades by 50-80%, providing high-power charging without placing excessive strain on the electrical infrastructure. By smoothing out demand spikes, these systems help protect critical grid components, such as substation transformers, which can cost millions to replace. With battery-buffered systems, peak loads on transformers are reduced, extending their life and potentially avoiding costly upgrades.

Battery-buffered systems also reduce the stress on distribution feeders and service transformers, which can wear down quickly under high loads. By spreading charging loads, these systems minimize thermal stress on components, reducing the frequency and cost of equipment replacements. They also maintain stable voltage levels, reducing the need for voltage regulation equipment.

Real-World Impact: Demonstrated Successes

Battery-buffered EV charging systems are already proving their value across diverse applications. Urban areas with limited grid capacity have successfully deployed high-power chargers without requiring extensive grid upgrades. For example, EVESCO has worked with a major fleet operator who avoided utility upgrade costs by implementing battery-buffered systems at their depot, resulting in significant operational cost savings.
On highways, battery-buffered systems have enabled fast, cost-effective deployment of charging stations, promoting long-distance EV travel. In remote areas, these systems allow charging without major infrastructure investments, making EV charging accessible in otherwise challenging locations.

EV chargers with battery energy storage
EVESCO deployment of a 2MWh energy storage system to enable fast charging without the need for major grid upgrades.

Battery-buffered EV charging is revolutionizing the development of EV infrastructure, offering significant cost, efficiency, flexibility, and speed advantages. For organizations planning to invest in EV charging, these systems present a future-proof solution that combines economic and operational benefits with a reduced impact on the grid. As EV adoption accelerates, battery-buffered systems will support the transition to fleet electrification, enabling organizations to expand charging networks efficiently and sustainably. From lower capital costs and more intelligent power management to faster deployment and grid protection, battery-buffered systems provide a robust foundation for the next generation of EV infrastructure.

Pass over the stars to rate this post. Your opinion is always welcome.
[Total: 0 Average: 0]

You may also like…

Mitigating cybersecurity risks in tomorrow's smart cities

Mitigating cybersecurity risks in tomorrow's smart cities

As global cities embrace the potential of ‘smart’ technology, from optimised traffic management to advanced energy grids, the allure of a more efficient, sustainable and digitally connected urban landscape is becoming a reality.

However, with these advancements come significant cybersecurity challenges that cities must address to ensure the promise of innovation is not overshadowed by the risk of threats. To build the resilient, sustainable cities of tomorrow, cybersecurity must be integrated as a core principle in every step of development.

The evolution of smart cities

Smart cities represent a groundbreaking shift in urban planning and management. These cities integrate advanced technologies like the Internet of Things (IoT), artificial intelligence (AI), and 5G networks to improve city services such as traffic management, waste collection, energy distribution and emergency response.

Countries like Singapore, South Korea and Germany are leading the way, investing billions in smart city technologies. China, as part of its ‘Made in China 2025’ initiative, has outlined an ambitious Smart Cities Development Plan to modernise its urban infrastructure.

Yet, as investment increases, so does the risk. The interconnected nature of smart cities presents an attractive target for cybercriminals, with critical infrastructure systems — such as energy, health care and transportation — vulnerable to cyber attacks that could ripple across the urban landscape.

Key cyberthreats facing smart cities

The list of cybersecurity threats faced by smart cities is diverse. Some have the potential to cause significant disruption to services and cause damage and loss for residents. Some of the most significant include:

Ransomware attacks on critical infrastructure:

Ransomware attacks on city systems are escalating as cybercriminals capitalise on the growing digital footprint of urban infrastructure. Municipalities worldwide have experienced system lockdowns, where attackers demand ransom payments to restore access to critical services.

Public safety system attacks:

Emergency systems, video surveillance and gunshot detection technologies are indispensable for public safety in smart cities. Unfortunately, these systems are prime targets for cyber attacks.

A survey conducted by UC Berkeley’s Centre for Long-Term Cybersecurity1 highlighted emergency alert systems as particularly vulnerable within smart city infrastructure. An attack on these systems could result in widespread panic or delayed response to genuine emergencies.

Data breaches and privacy concerns:

Smart cities collect vast amounts of data on their citizens, from travel patterns to health details. The widespread use of sensors and IoT devices makes these data pools tempting targets for hackers. A successful breach could lead to identity theft, financial fraud and diminished trust in public institutions.

Water supply and sanitation threats:

Attacks targeting water supply systems are a stark reminder of the vulnerabilities within smart city infrastructure. In 2021, hackers attempted to poison the water supply in Oldsmar, Florida, by altering chemical treatment levels. Although thwarted, the incident underscored the dangers posed to critical infrastructure by cyberthreats.

Cyberthreats transcend borders

The interconnected nature of smart cities amplifies the potential impact of cyber attacks, extending beyond individual municipalities. A breach in one city could have cascading effects on neighbouring regions and even disrupt international systems.

For example, a successful attack on a city’s energy grid could affect hospitals, schools and essential services over a wide area. A breach in transportation infrastructure could delay shipments, disrupting global supply chains.

Beyond financial losses, a successful cyber attack can also erode public trust in digital infrastructure, potentially slowing the adoption of smart city technologies that are essential for achieving sustainability goals.

Preparing for tomorrow’s cybersecurity threats

Building resilient smart cities requires comprehensive cybersecurity measures that address vulnerabilities across infrastructure, data and citizen engagement. Key strategies include:

1. Adopting a ‘secure-by-design’ approach:

Cities should embrace a secure-by-design strategy, ensuring cybersecurity is integrated from the earliest stages of technology deployment. This involves rigorous risk assessments and the use of encryption, multi-factor authentication and regular software updates.

2. Cross-sector collaboration:

Protecting smart cities from cyberthreats requires collaboration between government, private sector and technology providers. By sharing threat intelligence and co-ordinating on cybersecurity protocols, public and private entities can respond swiftly to cyber incidents.

3. Investing in cybersecurity talent:

As demand for cybersecurity experts rises, cities must invest in developing a skilled workforce. Governments, educational institutions and businesses should collaborate to create training programs that equip professionals with the skills needed to protect smart city infrastructures.

4. Citizen awareness and cyber hygiene:

Engaging citizens in cybersecurity efforts is crucial for creating a safe digital environment. Public awareness campaigns can teach residents about recognising phishing attempts, securing their devices and reporting suspicious activities. Empowering citizens to practice good cyber hygiene strengthens a city’s overall security.

Building resilient smart cities

The potential of smart cities is vast, offering enhanced quality of life, greater efficiency and sustainable urban living. However, without addressing cybersecurity risks, these benefits could be undermined by significant threats.

By prioritising cybersecurity as a fundamental component of smart city development, cities worldwide can build resilient infrastructures that protect citizens, sustain public trust, and lay the groundwork for a safer, more connected future.

Les Williamson is Regional Director Australia and New Zealand at Check Point Software Technologies, a cybersecurity platform provider of AI-powered, cloud delivered solutions. He has more than three decades of sales and leadership experience in the IT industry, having previously been Head of the AWS Telecommunications Business Unit for Asia Pacific and Japan as well as Vice President for ANZ at Citrix. In addition, he worked for Cisco Systems for more than 10 years in a variety of roles, including as Vice President Asia Pacific.

1. https://cltc.berkeley.edu/wp-content/uploads/2021/03/Smart_City_Cybersecurity.pdf

Top image credit: iStock.com/gremlin

0 Comments