Search

Battery-Buffered EV Charging

We are an online community created around a smart and easy to access information hub which is focused on providing proven global and local insights about sustainability

05 Nov, 2024

This post was originally published on Power Sonic

The electric vehicle (EV) revolution is driving rapid growth in charging infrastructure, posing new challenges for grid capacity, deployment speed, and cost. Battery-buffered EV charging systems offer a breakthrough solution to these challenges, expanding efficient, cost-effective charging infrastructure without overburdening the electric grid. This technology is changing how cities, businesses, and fleet operators build and manage EV charging networks, paving the way for widespread electric vehicle adoption.

What is Battery-Buffered EV Charging?

Battery-buffered EV charging utilizes energy storage to bridge the gap between grid limitations and charging demands. These systems can either be all-in-one charging systems with fully integrated batteries or can include separate battery energy storage systems working in combination with EV charging stations. These systems store power from the grid during low-demand periods and release it during peak charging times. They maintain a steady draw from the grid while delivering high-power charging to vehicles. Unlike traditional EV charging stations that pull their full load from the grid all at once, battery-buffered systems separate grid power needs from vehicle charging demands, allowing high-power charging even in areas with limited grid capacity.

Key Financial Benefits: Significant Cost Savings

Battery-buffered electric vehicle charging offers compelling cost advantages by reducing the need for costly grid upgrades. Traditional charging infrastructure often requires significant investments in substations and power distribution equipment. Still, battery-buffered systems reduce or eliminate these needs.

For example, a project evaluated by NREL for the DOT for four 150 kW DC fast charging stations estimated that project costs, including a small substation, would be $4 million. However, utilizing energy storage instead would reduce project costs to around $1.2-$1.5 million, a 65% savings. Beyond initial capital savings, these systems reduce operational energy costs through demand charge management.

The below table shows the estimated project cost comparison from NREL.

Line Item Substation Upgrade Approach Battery-Buffered EV Charging Approach
DC Fast Charging Stations $1,000,000 $1,000,000
Battery Energy Storage System $200,000 – $500,000
Substation (small) $3,000,000
Total Project Cost* $4,000,000 $1,200,000 – $1,500,000
Timeline 3-6 years 1-2 years
*Most federally funded programs that support EV charging do not consider grid infrastructure upgrades, such as a substation, as an eligible cost. Some federally funded programs may support energy storage systems as an eligible cost, which can reduce the total project cost.

By charging batteries during off-peak times when rates are lower, operators can avoid high-demand fees, which often make up a large part of operational expenses. In some markets, battery-buffered stations can earn additional revenue by participating in demand-side response programs, opening new income streams that traditional EV charging stations cannot access.

Enhanced Operational Efficiency: Smarter Power Management

Battery-buffered systems revolutionize day-to-day charging operations by optimizing power management. They can dynamically allocate power to multiple charging ports based on demand, ensuring efficient energy distribution. This real-time allocation enables charging stations to serve more vehicles simultaneously while maintaining charging speeds.

Battery-buffered systems also make it easier to incorporate renewable energy sources. Solar or wind energy can be stored in batteries during high production periods and used for vehicle charging when renewable production is low. This approach reduces reliance on grid electricity, making operations more sustainable and economical.

Accelerated Deployment: Faster Infrastructure Expansion

One of the standout advantages of battery-buffered charging is its rapid deployment capability. Unlike traditional charging infrastructure, which can take 3–6 years to deploy due to utility upgrades and permitting processes, battery-buffered systems can be installed in as little as 1–2 years. This shortened timeline allows organizations to respond quickly to growing EV demand without waiting for major grid improvements.

Battery-buffered systems also simplify regulatory approvals, as they place less strain on the grid. This streamlined process can save months or even years, allowing charging infrastructure to be rolled out rapidly, especially in high-priority areas with limited grid capacity.

Flexibility and Scalability: Adapting to Demand

Battery-buffered systems offer unmatched flexibility in scaling and placement. Their modular design allows organizations to start with a few charging ports and expand as demand grows without major grid upgrades. This phased approach keeps infrastructure costs manageable, especially in areas where EV adoption may be more gradual.
Battery-buffered systems also open up new locations for charging stations, including remote or urban areas with limited grid access. This location flexibility expands options for charging station placement, supporting a broader and more accessible charging network.

Video explainer of battery-buffered EV charging

Minimizing Grid Upgrades: Protecting Infrastructure

According to an analysis by NREL, battery-buffered EV charging systems reduce the need for grid upgrades by 50-80%, providing high-power charging without placing excessive strain on the electrical infrastructure. By smoothing out demand spikes, these systems help protect critical grid components, such as substation transformers, which can cost millions to replace. With battery-buffered systems, peak loads on transformers are reduced, extending their life and potentially avoiding costly upgrades.

Battery-buffered systems also reduce the stress on distribution feeders and service transformers, which can wear down quickly under high loads. By spreading charging loads, these systems minimize thermal stress on components, reducing the frequency and cost of equipment replacements. They also maintain stable voltage levels, reducing the need for voltage regulation equipment.

Real-World Impact: Demonstrated Successes

Battery-buffered EV charging systems are already proving their value across diverse applications. Urban areas with limited grid capacity have successfully deployed high-power chargers without requiring extensive grid upgrades. For example, EVESCO has worked with a major fleet operator who avoided utility upgrade costs by implementing battery-buffered systems at their depot, resulting in significant operational cost savings.
On highways, battery-buffered systems have enabled fast, cost-effective deployment of charging stations, promoting long-distance EV travel. In remote areas, these systems allow charging without major infrastructure investments, making EV charging accessible in otherwise challenging locations.

EV chargers with battery energy storage
EVESCO deployment of a 2MWh energy storage system to enable fast charging without the need for major grid upgrades.

Battery-buffered EV charging is revolutionizing the development of EV infrastructure, offering significant cost, efficiency, flexibility, and speed advantages. For organizations planning to invest in EV charging, these systems present a future-proof solution that combines economic and operational benefits with a reduced impact on the grid. As EV adoption accelerates, battery-buffered systems will support the transition to fleet electrification, enabling organizations to expand charging networks efficiently and sustainably. From lower capital costs and more intelligent power management to faster deployment and grid protection, battery-buffered systems provide a robust foundation for the next generation of EV infrastructure.

Pass over the stars to rate this post. Your opinion is always welcome.
[Total: 0 Average: 0]

You may also like…

Switzerland to Add More Solar Power to Rooftops and Highway Noise Barriers

Switzerland to Add More Solar Power to Rooftops and Highway Noise Barriers

In Switzerland, highway noise barriers surrounding the Oberland Autobahn near Wangen-Brüttisellen will soon provide solar power. Last year, Switzerland’s Federal Roads Office made the surfaces of highway noise barriers free and set out to cover 350 of them in solar panels. Swiss officials estimated that the arrays could generate 100 gigawatt hours of clean energy […]
The post Switzerland to Add More Solar Power to Rooftops and Highway Noise Barriers appeared first on EcoWatch.

From coal to clean: accelerating Asia's renewable energy transition

From coal to clean: accelerating Asia's renewable energy transition

With world leaders, climate and environmental scientists and business leaders having gathered in Baku for COP29 — the 29th Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) — we’ve been advocating that this transformation poses significant challenges while simultaneously providing opportunities for growth, resilience and innovation.

The role of coal and the need for change

Coal remains the largest contributor to climate change, generating 35% of global electricity as of 2023. The International Energy Agency’s (IEA) net-zero scenario calls for OECD countries to reduce coal’s share in power generation to 14% by 2030, with a complete global phase-out of unabated coal by 2040.

This underscores the fact that achieving global climate goals hinges on a viable energy transition strategy, particularly in Asia, where demand continues to surge.

The need for decarbonisation is stark: Asia’s carbon emissions now account for over half of the global total. The young age of Asia’s coal fleet — about 13 years on average — complicates the shift to renewables, with significant investments still tied up in coal plants. According to the World Economic Forum, policies that streamline and incentivise plant closures or conversions can accelerate the pace of transition.

Economic and environmental challenge

Transitioning to renewables in Asia requires not only technological shifts but also robust financial mechanisms.

We need financing models that incorporate public and private capital, with mechanisms like loans and grants making clean energy more accessible and competitive.

Countries like Vietnam face hurdles such as rigid power purchase agreements that protect coal plants from competition. Overcoming these barriers demands innovative financing, potentially reducing the cost of capital to make renewable projects more viable and less risky.

The move from coal to renewables also requires securing grid stability and resilience. The diversity of resources across Asia — from hydropower in Southeast Asia to solar in China — necessitates tailored strategies for integrating these resources into a cohesive and stable energy grid. GHD is actively involved in helping clients to navigate these complexities by advising on technical planning, decommissioning and the use of renewables like solar and wind.

Action steps to help Asia transform from coal to clean:

Develop robust financing models: Facilitate access to capital with a mix of loans, grants and public–private partnerships to make renewable energy more competitive and scalable.

Strengthen policy frameworks: Governments should adopt supportive policies to encourage investment, ease regulatory restrictions and provide incentives for renewable energy projects.

Invest in grid resilience and smart technology: Modernising grid infrastructure, including smart grids, is essential for integrating renewables and managing intermittent supply efficiently.

Encourage regional knowledge-sharing and collaboration: Cross-border partnerships can accelerate technology transfer, innovation and the development of best practices for transitioning from coal.

Support local workforces and communities: Implement training programs, workforce transition initiatives and local engagement strategies to ensure a fair and equitable transition for coal-dependent communities.
 

Based on this, there are three critical pillars for a successful transition: stable technical solutions, sustainable stakeholder engagement and a strong business case. Every project requires bespoke planning that integrates stakeholder interests, addresses environmental impacts and leverages technical expertise to ensure grid reliability.

A well-defined transition strategy that supports all stakeholders and secures financial backing is essential for a viable energy future.

Creating such a strategy involves evaluating the potential of each project and exploring repurposing opportunities, from battery storage to hydrogen production.

Looking forward: policy, financing and social impact

A successful transition will rely on supportive policies that facilitate investment and foster technological advancements. We need to understand the importance of a ‘just transition’ that balances environmental goals with economic equity, especially in coal-reliant communities.

Communities cannot be sidelined; local stakeholders need to benefit from new economic opportunities in renewables. At COP29 in Baku, GHD has been advocating for a holistic approach, including policy alignment, financial innovation and active community engagement.

The shift from coal to clean energy isn’t merely a goal — it’s an urgent necessity. Through collaboration, innovation and commitment to sustainable development, we can achieve a cleaner, greener future for Asia and beyond.

*Richard Fechner is GHD’s Enterprise Business Advisory Leader, leading the global business in providing strategy, commercial, economic, business case, logistics, policy, regulatory, asset management and transaction services. With over 30 years of experience, Richard has held senior roles in both the private and public sectors, contributing significantly to infrastructure development, investment and delivery across various sectors including ports, agriculture, energy, government and defence. He has advised on approximately AU$150 billion in infrastructure transactions and is a highly skilled infrastructure and business professional with expertise in strategic planning, business management and project engineering.

**Dr Tej Gidda is a distinguished expert in clean energy transitions and currently serves as the Global Leader for Future Energy at GHD. With over 20 years of industry experience, Dr Gidda holds a PhD in Environmental Engineering and is a registered Professional Engineer in Ontario. His work focuses on integrating clean energy technologies into existing systems and developing innovative strategies to overcome challenges related to reliability and affordability. Dr Gidda’s expertise spans hydrogen, renewable natural gas, traditional renewables, energy from waste, energy security and planning. He is also an adjunct professor at the University of Waterloo.

Top image caption: Pagudpud Wind Farm, Ilocos Norte, Philippines. Image courtesy of GHD.

0 Comments